



# Physics at Future e+e- Colliders

# Yuanning Gao

# Tsinghua University



The Fifth Annual Conference on Large Hadron Collider Physics May 15-20, 2017, Shanghai, China





#### outline

- o introduction
- Higgs sector at linear colliders
- o top physics at linear colliders
- o potential of discovering new particles
- o summary



#### proposals of future linear colliders



ILC





CLIC

0.1-1 TeV Pe-: 80%; Pe+: 30% 1.8 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> @ 500 GeV **TDR in 2013** 1506.05992; 1506.07830

0.35-3 TeV Pe-: 0%(80%); Pe+: 0% 5.9 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> @ 3 TeV **CDR** in 2012

1202.5940; 1608.07537 3



#### 20+ years of running



#### ILC H-20 running scenario

Total 250GeV 1500fb-1 350GeV 200fb-1 500GeV 4000fb-1

#### Integrated Luminosities [fb]



#### **CLIC staging scenario**

| Stage | $\sqrt{s}$ (GeV) | $\mathscr{L}_{int}$ (fb <sup>-1</sup> ) |
|-------|------------------|-----------------------------------------|
| 1     | 380              | 500                                     |
| 1     | 350              | 100                                     |
| 2     | 1500             | 1500                                    |
| 3     | 3000             | 3000                                    |







#### three major probes for BSM at future linear colliders





new particles

with emphasis on complementarity with LHC



#### Higgs production at e<sup>+</sup>e<sup>-</sup> collisions



two important thresholds:  $\sqrt{s} \sim 250$  GeV for ZH, ~500 GeV for ZHH and ttH





nail down Higgs sector at future lepton colliders

bottom-up and model independent way

 $J^{\rm CP}$  $M_h$  $\Gamma_h$ Mass & J<sup>CP</sup>

new CP violating source?

$$L_{\text{Higgs}} \quad hhh: \quad -6i\lambda v = -3i\frac{m_h^2}{v}, \quad hhhh: \quad -6i\lambda = -3i\frac{m_h^2}{v^2}$$

hgg

probe Higgs potential, EWBG?

$$L_{Gauge} \begin{array}{l} U_{\mu}^{+}W_{\nu}^{-}h: \ i\frac{g^{2}v}{2}g_{\mu\nu} = 2i\frac{M_{W}^{2}}{v}g_{\mu\nu}, \quad W_{\mu}^{+}W_{\nu}^{-}hh: \ i\frac{g^{2}}{2}g_{\mu\nu} = 2i\frac{M_{W}^{2}}{v^{2}}g_{\mu\nu}, \\ Z_{\mu}Z_{\nu}h: \ i\frac{g^{2}+g'^{2}v}{2}g_{\mu\nu} = 2i\frac{M_{Z}^{2}}{v}g_{\mu\nu}, \quad Z_{\mu}Z_{\nu}hh: \ i\frac{g^{2}+g'^{2}}{2}g_{\mu\nu} = 2i\frac{M_{Z}^{2}}{v^{2}}g_{\mu\nu} \end{array} \right]$$

(2) nature? from SSB?

$$\begin{array}{ccc} L_{\rm Yukawa} & h\bar{f}f: & -i\frac{y^f}{\sqrt{2}} = -i\frac{m_f}{v} \\ \\ L_{\rm Loop} & h\gamma\gamma & hqq & h\gamma Z \end{array}$$

 $h\gamma\gamma$ 

 $L_{\rm Loop}$ 

m<sub>f</sub> from Yukawa coupling? **2HDM?** 

new particles in the loop?

+ possible exotic interactions of Higgs, e.g. H—>dark matter?



#### the key of model independence: absolute $\sigma_{\text{ZH}}$





 $Y_1 = \sigma_{ZH} \propto g_{HZZ}^2$  $\delta g_{HZZ} \sim 0.38\%$ 

meas. of \u03c6<sub>ZH</sub> doesn't depend on how Higgs decays
 meas. of \u03c6<sub>ZH</sub> doesn't depend on underlying models on HZZ vertex





in some BSM, only Higgs wave function gets modified

Higgs BR, and ratio of Higgs couplings could stay unchanged

$$\mathcal{O}_{H} = rac{1}{2} \left( \partial_{\mu} |H|^{2} 
ight)^{2}$$

Appears in Lagrangian as

$$\mathcal{L} \supset rac{c_H}{\Lambda^2} \mathcal{O}_H$$

and after EWSB

$$H \to v + \frac{1}{\sqrt{2}}h$$

N. Craig @ LCWS16

arXiv: 1702.06079

$$\frac{c_H}{\Lambda^2} \cdot \frac{1}{2} \left( \partial_\mu |H|^2 \right)^2 \to \left( \frac{2c_H v^2}{\Lambda^2} \right) \cdot \frac{1}{2} (\partial_\mu h)^2$$

Correction to Higgs wavefunction in broken phase

Canonically normalizing  $h 
ightarrow \left(1 - c_H v^2 / \Lambda^2\right) h$ 

shifts all Higgs couplings uniformly, e.g.

$$\frac{m_Z^2}{v}hZ_{\mu}Z^{\mu} \to \frac{m_Z^2}{v}\left(1 - c_H v^2 / \Lambda^2\right) hZ_{\mu}Z^{\mu}$$

 $\delta g_{HZZ} \sim 0.38\% \longrightarrow \Lambda > 2.8 \text{ TeV}$ 



#### HWW coupling & Higgs total width $\Gamma_{H}$











$$Y_{2} = \sigma_{\nu\bar{\nu}H} \cdot \operatorname{Br}(H \to b\bar{b}) \propto g_{HWW}^{2} \cdot \operatorname{Br}(H \to b\bar{b})$$
$$Y_{3} = \sigma_{ZH} \cdot \operatorname{Br}(H \to b\bar{b}) \propto g_{HZZ}^{2} \cdot \operatorname{Br}(H \to b\bar{b})$$
$$g_{HWW} \propto \sqrt{\frac{Y_{2}}{Y_{3}}} \cdot g_{HZZ} \propto \sqrt{\frac{Y_{1}Y_{2}}{Y_{3}}} \quad ->0.4\%$$

- $\triangleright \delta g_{HWW}$  is a limiting factor for  $\Gamma_H \&$ all other couplings (other than gHZZ)
- ▶ higher  $\sqrt{s}$ , much larger  $\sigma_{VVH}$





#### determine Higgs CP admixture

find CP-violating source in Higgs sector —> baryongenesis
 essential to understand structures of all Higgs couplings

through H—>T<sup>+</sup>T<sup>-</sup> 
$$L_{Hff} = -\frac{m_f}{v}H\bar{f}(\cos\Phi_{CP} + i\gamma^5\sin\Phi_{CP})f$$
  
 $\Delta\Phi_{CP} \sim 3.8^{\circ}$  D.Jeans @ LCWS16

through HZZ/HWW  $L_{HVV} = 2C_V M_V^2 (\frac{1}{v} + \frac{a}{\Lambda}) HV_{\mu} V^{\mu} + C_V \frac{b}{\Lambda} HV_{\mu\nu} V^{\mu\nu} + C_V \frac{\tilde{b}}{\Lambda} HV_{\mu\nu} \tilde{V}_{\mu\nu}$ (CP-odd)  $\Delta \tilde{b} \sim 0.016 \quad \text{(for } \Lambda = 1\text{TeV} \text{) T.Ogawa @ LCWS16}$ 



#### **Top-Yukawa coupling**



- Iargest Yukawa coupling; crucial role in theory
- non-relativistic tt-bar bound state correction: enhancement by ~2 at 500 GeV
- ▶ cross section increases by ~4 if √s goes from 500 to 550 GeV
- Higgs CP measurement





| $\Delta g_{ttH}/g_{ttH}$ | 500 GeV | + 1 TeV |
|--------------------------|---------|---------|
| Snowmass                 | 7.8%    | 2.0%    |
| H20                      | 6.3%    | 1.5%    |

Yonamine, et al., PRD84, 014033; Price, et al., Eur. Phys. J. C75 (2015) 309



#### Higgs self-coupling



- direct probe of the Higgs potential
- Iarge deviation (> 20%) motivated by electroweak baryongenesis, could be ~100%
- √s>=500 GeV, e+e- —> ZHH
- ▶  $\sqrt{s} = 1$  TeV, e+e- —> vvHH (WW-fusion)



|      | $\Delta \lambda_{HHH} / \lambda_{HHH}$ |         | 500 G | eV     | + 1 TeV |   |
|------|----------------------------------------|---------|-------|--------|---------|---|
| ILC  | Snowmass                               |         | 46%   | /<br>2 | 13%     |   |
|      | H20                                    |         | 27%   |        | 10%     |   |
|      |                                        |         |       |        |         | _ |
|      | ~                                      | 1.4 TeV |       | +3 TeV |         |   |
| CLIC |                                        | 24%     |       | 11%    |         |   |







- constructive interference in ZHH, while destructive in vvHH (& LHC) —> complementarity between ILC & LHC, between  $\sqrt{s} \sim 500$  GeV and >1TeV
- ▶ if  $\lambda_{\text{HHH}} / \lambda_{\text{SM}} = 2$ , Higgs self-coupling can be measured to ~15% using ZHH at 500 GeV e+e-



Duerig, Tian, et al, paper in preparation

references for large deviations

e.g.

Grojean, et al., PRD71, 036001; Kanemura, et al., 1508.03245; Kaori, Senaha, PHLTA, B747, 152; Perelstein, et al., JHEP 1407, 108





#### Higgs physics at CLIC



L. Linssen

#### Higgs physics above 1 TeV



Vector boson fusion:  $e^+e^- \rightarrow Hvv, e^+e^- \rightarrow He^+e^-$ High  $\sigma$  + increased luminosity Gives access to rare Higgs decays



#### ttH production:

- Extraction of Yukawa coupling  $y_t$
- Best at √s above 700 GeV

#### Studied at 1.4 TeV, 1.5 ab<sup>-1</sup>

- Fully hadronic (8 jets)
- Semi-leptonic (6 jets + lepton + v)
   Statistical accuracy:
- Δ(g<sub>Htt</sub>) = ±4.4% at 1.4 TeV

#### double Higgs production



- Cross section sensitive to  $g_{\text{HHH}}$  and  $g_{\text{WWHH}}$
- Small cross section (225/1200 evts @ 1.4/3 TeV)
- Large backgrounds
- ⇒ Requires high energy and high luminosity

Most promising final states: bbbbvv and bbWW\*vv



 $\Rightarrow \Delta g_{\text{HHH}} / g_{\text{HHH}} \approx \pm 10\%$ for operation at 1.4 TeV + 3 TeV with polarisation

#### Process with strong sensitivity to BSM

| Model                 | $\Delta g_{hhh}/g_{hhh}^{SM}$ |
|-----------------------|-------------------------------|
| Mixed-in Singlet      | -18%                          |
| Composite Higgs       | tens of $\%$                  |
| Minimal Supersymmetry | $-2\%^{a}$ $-15\%^{b}$        |
| NMSSM                 | -25%                          |

arXiv:1305.6397

L. Linssen

#### combined CLIC Higgs results

#### indicative comparison with HL-LHC capabilities







#### three major probes for BSM at e+e- colliders

# ▶ Higgs b top

new particles

with emphasis on complementarity with LHC



#### top mass: vacuum stability















# Ŀ.

#### top mass at LCs: systematic errors

| error source                                     | $\Delta m_t^{\mathrm{PS}}$ [MeV] | references |
|--------------------------------------------------|----------------------------------|------------|
| stat. error (200 fb <sup><math>-1</math></sup> ) | 13                               | [63, 66]   |
| theory (NNNLO scale variations, PS scheme)       | 40                               | [65, 66]   |
| parametric ( $\alpha_s$ , current WA)            | 35                               | [65]       |
| non-resonant contributions (such as single top)  | < 40                             | [67]       |
| residual background / selection efficiency       | 10 - 20                          | [63]       |
| luminosity spectrum uncertainty                  | < 10                             | [68]       |
| beam energy uncertainty                          | < 17                             | [63]       |
| combined theory & parametric                     | 30 - 50                          |            |
| combined experimental & backgrounds              | 25 - 50                          |            |
| total (stat. $+$ syst.)                          | 40 - 75                          |            |



#### top EW chiral couplings



M.Vos @ LCWS16

Assume production is dominated by SM and NP scale is beyond direct reach.

 $\Gamma^{t\bar{t}X}_{\mu}(k^2,q,\bar{q}) = ie\left\{\gamma_{\mu}\left(F^X_{1V}(k^2) + \gamma_5 F^X_{1A}(k^2)\right) - \frac{\sigma_{\mu\nu}}{2m_t}(q+\bar{q})^{\nu}\left(iF^X_{2V}(k^2) + \gamma_5 F^X_{2A}(k^2)\right)\right\}$ 





#### top EW chiral couplings







great sensitivities to discover/distinguish various composite models





#### three major probes for BSM at e+e- colliders

# Higgs top new particles

with emphasis on complementarity with LHC







#### Natural SUSY: light Higgsinos

$$\frac{m_Z^2}{2} = \frac{m_{H_d}^2 + \Sigma_d^d - (m_{H_u}^2 + \Sigma_u^u) \tan^2 \beta}{\tan^2 \beta - 1} - \mu^2 \simeq -m_{H_u}^2 - \Sigma_u^u - \mu^2$$



arXiv:1307.3566



#### WIMP Dark Matter search



#### Decay of a new particle to Dark Matter (DM)

DM has a charged partner in many new physics models.

**SUSY:** The Lightest SUSY Particle (LSP) = DM  $\rightarrow$  Its partner decays to a DM.

Events with missing Pt (example: light chargino: see the previous page)

#### **Higgs Invisible Decay**

#### Mono-photon Search





#### SUSY search at CLIC





— SM

=  $\tilde{
u}_{ au}, \tilde{
u}_{\mu}, \tilde{
u}_{e}$ 

neutralinos

Wider applicability than only SUSY: Reconstructed particles can be classified simply as states of given mass, spin and quantum numbers





#### Summary

- future linear colliders are able to comprehensively reveal the mysteries at electroweak scale
- main probes for BSM: precision measurements of Higgs and Top properties, direct search of new particles
- precision top mass requires  $\sqrt{s} >= 350 \text{ GeV}$
- direct measurements of Higgs self-coupling and top-Yukawa couplings requires √s >= 500 GeV
- one of the greatest advantage is energy extendability, once next energy scale is found by precision measurements
- apologies that many interesting physics couldn't be covered





backup



### **Big Branching Point at the EW Scale**



### Why is the EW scale so important?

#### Mystery of something in the vacuum

K.Fujii@HPNP2017



The SM does not explain why the Higgs field developed a vacuum expectation value (*Why*  $\mu^2 < 0$ ?)! The answer forks depending on whether H125 is elementary or composite!





# **Power of Beam Polarization**



#### Slepton Pair

$$\begin{array}{c}
e^{+} \\
Y \\
e^{-} \\
e^{-} \\
e^{-} \\
R/L \\
U(1) \\
Y
\end{array}$$

$$\begin{array}{c}
\mu^{+} \\
\mu^{-} \\$$

$$Y_L = -1/2 : e_L^-$$
  
 $Y_R = -1 : e_R^-$ 

In the symmetry limit,  $\sigma_{\rm R} = 4 \sigma_{\rm L}$ !

#### WW-fusion Higgs Prod.



#### **BG** Suppression



#### Signal Enhancement





Y. Sudo





clean environment at e+e-; excellent b- and c-tagging performance
 bb/cc/gg modes can be separated simultaneously by template fitting



Ono, et. al, Euro. Phys. J. C73, 2343; F.Mueller, PhD thesis (DESY)



#### exotic decay: search of Higgs to invisible







#### expected precisions of Higgs couplings



#### Projected Higgs coupling precision (7-parameter fit)



# **Two-Fermion Processes**

Z' Search / Study



Figure 23: Sensitivity of the ILC to various candidate Z' bosons, quoted at 95% conf., with  $\sqrt{s} = 0.5$  (1.0) TeV and  $\mathcal{L}_{\text{int}} = 500$  (1000) fb<sup>-1</sup>. The sensitivity of the LHC-14 via Drell-Yan process  $pp \to \ell^+\ell^- + X$  with 100 fb<sup>-1</sup> of data are shown for comparison. For details, see [14].

# ILC's Model ID capability is expected to exceed that of LHC even if we cannot hit the Z' pole.

Beam polarization is essential to sort out various possibilities.

K.Fujii, Pheno2014, Pittsburgh, May 7, 2014