

Measurement of Standard Model Higgs boson decay to $\mu^+\mu^-$ at CEPC

Zhenwei Cui on behalf of CEPC collaboration Peking University

Introduction it is very difficult while quite interesting to measure Higgs coupling to second generation particles. The most updated direct probe on $H \rightarrow \mu^+ \mu^-$ from ATLAS experiment set upper limit on the crosssection times the branching ratio as 2.8 times the Standard Model prediction. For the future experiments, the projects are as following:

Detector	Signal	luminosity(fb ⁻¹)	\sqrt{s} (TeV)	Significance or Precision	
ATLAS	ggH+VBF+	300	14	2.3	
projection ^[1]	VH+ttH	3000	14	7	
CMS	0/1-jets(µµ)	300	14	Uncertainty [40,42](%)	
projection ^[2] VB	VBF(jj+μμ)	3000	14	Uncertainty [20,24](%)	
ILC ^[3,4]	vvH	500	1	2.75	
	qqH	250	0.25	1.1	
	vvH	250	0.25	1.8	
1. ATL-PHYS-PUB-2013-014 2. CMS-NOTE-13-002 3. arXiv:1603.04718 4. SiD Letter of Intent, arXiv:0911.0006					
→ 35 ATLAS Preliminary					

Inclusive analysis

 Cut-based 	Category	signal	ZZ	WW	ZZorWW	SingleZ	2f
	Preselection	207.3	311312	129869	501590	63658	1740371
	120 <dium<130< th=""><th>189.7</th><th>5479</th><th>17126</th><th>57405</th><th>1868</th><th>52525</th></dium<130<>	189.7	5479	17126	57405	1868	52525
	90.8 <recoilu<93.4< th=""><th>118.4</th><th>1207</th><th>868</th><th>2115</th><th>164</th><th>1157</th></recoilu<93.4<>	118.4	1207	868	2115	164	1157
	25 <diupt<62.4< th=""><th>109.5</th><th>951</th><th>697</th><th>1675</th><th>121</th><th>439</th></diupt<62.4<>	109.5	951	697	1675	121	439
	-55.2 <diupz<55.2< th=""><th>107.1</th><th>897</th><th>647</th><th>1613</th><th>112</th><th>391</th></diupz<55.2<>	107.1	897	647	1613	112	391
	cosum<0.28	69.7	480	55	277	55	164
	cosup>-0.28	58.3	348	29	142	44	116
	puu>-0.996	58.0	346	27	142	43	70
	efficiency	28.0%					

• MVA(BDTG) :muon momentum and angles

The Circular Electron-Positron Collider (CEPC), proposed by the Chinese particle physics community, is one such possible facility. CEPC will operate at a center-of-mass energy of $\sqrt{s} \sim 250$ GeV that maximizes the Higgs production cross section through the $e^+e^- \rightarrow ZH$ process. At the CEPC, in contrast to the LHC, Higgs candidate events can be identified through the **recoil** mass method without tagging its decays. Therefore, Higgs production can be disentangled from Higgs decay in a model-independent way. Moreover, the cleaner environment at a lepton collider allows much better exclusive measurement of Higgs decay channels. All of these give CEPC impressive reach in probing Higgs properties.

•Samples

• Analysis based on full simulations at \sqrt{s} = 250 GeV CEPC • Integrated luminosity in 10 years: 5000 fb-1

Signal: $e^-e^+ \rightarrow ZH$, $H \rightarrow \mu^+\mu^-$

Backgrounds: 2f(ee, μμ, ττ, qq) 4f(ZZ, WW, ZZorWW, SZ)

•ZqqHuu analysis

· Cut haaad							
 Cut-based 	Category	signal	signal ZZ WW ZZorWW		SingleZ	2f	
	Preselection	207.3	390775	183751	463361	101164	0
	120 <invariant mass<130<="" td=""><td>141.6</td><td>3786</td><td>181</td><td>227</td><td>244</td><td>0</td></invariant>	141.6	3786	181	227	244	0
	jet1m<4.2 jet2m<2.8	133.0	3216	111	0	9	0
	dijm>76.0	127.5	2917	2	0	8	0
	90.9 <recoilu<93.5< td=""><td>78.7</td><td>893</td><td>0</td><td>0</td><td>0</td><td>0</td></recoilu<93.5<>	78.7	893	0	0	0	0
	20 <diupt<62.3< td=""><td>74.9</td><td>743</td><td>0</td><td>0</td><td>0</td><td>0</td></diupt<62.3<>	74.9	743	0	0	0	0
	-58 <diupz<58< td=""><td>74.2</td><td>714</td><td>0</td><td>0</td><td>0</td><td>0</td></diupz<58<>	74.2	714	0	0	0	0
	cosup>-0.94	73.0	691	0	0	0	0
	cosum<0.94	71.6	665	0	0	0	0
	efficiency	50.6%					

• TMVA step1 (MLP): jet1m,jet2m,dijm,recoilj

step2 (BDTG): cosum, cosup, upZ, umZ, diupz,dijpz, j1H, j2H, cosj1,cosj2

Fit result of cut-based (left) and MVA(right)

	Inclusive	$Z \rightarrow qq$	$Z \rightarrow vv$	Signal: CBShape.
MVA	7.37	8.17	2.62	BKG: Chebyshev
Cut	7.67	8.12	1.91	

• Generator: WHIZARD v1.95 .

• Simulation: MOKKA with CEPC conceptual detector design, containing silicon vertex and tracking system, TPC tracker, ultra high granularity calorimeter system and a strong solenoidal magnetic field of 3.5 Tesla.

• Reconstruction: Arbor version3, an efficient particle flow algorithm

• Summary

CEPC is expected to observe $H \rightarrow \mu^+ \mu^-$ with a significance of 7.7 σ with inclusive analysis, and 8.2 σ in Z \rightarrow qq channel. The couplings can be constrained within 10% level of SM predictions. Optimizations on magnetic field and Tracker are also provided.

• Optimization on Magnetic Field Strength and Tracker size ($Z \rightarrow qq$ channel)

CEPC-2017, PKU & IHEP

czw999wudi@qq.com