Search for a high mass Higgs boson in the $H \rightarrow WW \rightarrow e \nu \mu \nu$ channel in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector

#300 LHCP poster session, Shanghai

May 16, 2017

Yongke Zhao

Shandong University & LAL

On behalf of the ATLAS collaboration

Abstract

A search for a high-mass Higgs boson is performed in the $H \rightarrow WW \rightarrow \ell \nu \ell \nu$ decay channel using pp collision data corresponding to an integrated luminosity of 13.2 fb⁻¹, collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. Different hypotheses are tested, including heavy Higgs with a narrow width approximation (NWA) and a large width assumption (LWA). Three orthogonal event categories are defined for the search: one ggF quasi-inclusive category where the VBF phase spaces are excluded and two VBF categories where the VBF signals are dominant. No evidence of a high-mass Higgs boson is found. Upper limits on $\sigma_H \times BR(H \rightarrow WW)$ as a function of the Higgs boson mass and width are obtained in the mass range between 300 GeV and 3 TeV. **CONF note:** ATLAS-CONF-2016-074

Motivation

We are searching for a heavy Higgs beyond the Standard Model

Data: LHC Run 2 (year 2015 + 2016) data with $\int L dt = 13.2 fb^{-1}$ at 13 TeV

a heavy Higgs with a narrow width approximation (NWA) or large width Signal hypotheses:

assumption (LWA)

Mass range: 300 GeV — 3 TeV

Heavy Higgs production modes targeted: a) ggF b) VBF

Event Selection

VBF 1J phase space: $N_{\text{jet}} = 1$, $|\eta_j| > 2.4$ and $\min(|\Delta \eta_{j\ell}|) > 1.75$

VBF 2J phase space: $N_{jet} \ge 2$, $m_{jj} > 500 \text{ GeV}$ and $|\Delta y_{jj}| > 4$

Signal Regions (SRs)

SR_{ggF}	SR _{VBF1J}	SR _{VBF2J}
Preselection cuts: p_{T}^{lead}	$> 25 \mathrm{GeV}, p_\mathrm{T}^\mathrm{sublead} >$	$15{\rm GeV}\!,$ 3rd lepton veto, $m_{\ell\ell}>10{\rm GeV}$

Control Regions (CRs)

$ m WWCR_{ggF}$	Top ${\rm CR}_{ggF}$	WW CR _{VBF1J}	Top CR_{VBF}		
Preselection cuts: $p_T^{\text{lead}} > 25 \text{ GeV}$, $p_T^{\text{sublead}} > 15 \text{ GeV}$, 3rd lepton veto, $m_{\ell\ell} > 10 \text{ GeV}$					
$N_{b-jet} = 0$	$N_{b-jet} = 1$	$N_{b-jet} = 0$	$N_{b-jet} \ge 1$		
$\left \Delta\eta_{\ell\ell}\right > 1.8$	$\left \Delta \eta_{\ell\ell} \right < 1.8$	$(\Delta \eta_{\ell\ell} > 1.8 \text{ or }$	_		
$m_{\ell\ell} > 55$	GeV	$m_{\ell\ell} < 55 \mathrm{GeV})$	_		
$p_{\mathrm{T}}^{\mathrm{lead}} > 45$	GeV	$p_{\mathrm{T}}^{\mathrm{lead}} > 25 \mathrm{GeV}$	$p_{\mathrm{T}}^{\mathrm{lead}} > 25 \mathrm{GeV}$		
$p_{\mathrm{T}}^{\mathrm{sublead}} > 3$	30 GeV	$p_{\mathrm{T}}^{\mathrm{sublead}} > 25 \mathrm{GeV}$	$p_{\mathrm{T}}^{\mathrm{sublead}} > 15 \mathrm{GeV}$		
$\max(m_{\mathbf{T}}^W) >$	→ 50 GeV	-	_		
Excluding	g VBF	VBF1J	VBF1J or VBF2J		
VBF1J and	VBF2J	phase space	phase space		

$N_{id+id}^{W+jets} = N_{id+anti-id}^{W+jets} \times FF = (N_{id+anti-id} - N_{id+anti-id}^{EW}) \times \frac{N_{id}}{N_{anti-id}}$

• id / anti-id: leptons required to pass / veto the lepton identification

• Anti-id leptons have looser requirements to improve the statistics

Z+jets, non-WW diboson, H125: small contribution. Predicted from simulation (ggF component

interference with WW also considered)

Dominant Systematics

• Signal QCD scale uncertainties on category migration: 30% ($m_{\rm H} = 300$ GeV) — 90% ($m_{\rm H} = 3$

TeV) for VBF 1J and 25% — 40% for VBF 2J

- Top (WW) background jet energy scale and resolution uncertainty: 9.8% (16%) and 12% (23%) in VBF 1J and 2J SRs
- Top (WW) background generator uncertainty: 17% (35%), 48% (48%) in VBF 1J, 2J SRs

Similar in CRs \longrightarrow Extrapolation uncertainties from CRs to SRs remain small

Results

	$N_{b-jet} =$	= 0		
	$ \Delta \eta_{\ell\ell} <$	1.8		
	$m_{\ell\ell} > 55$	GeV		
	$p_{\mathrm{T}}^{\mathrm{lead}} > 45$	GeV		
	$p_{\rm T}^{\rm sublead} > 3$	0 GeV		
	$\max(m_{\rm T}^W) >$	$50\mathrm{GeV}$		
Inclusive in N_{jet} but	$N_{jet} = 1$		$N_{jet} \ge 2$	
excluding VBF1J	$ \eta_j > 2.4$		$m_{jj} > 500 {\rm GeV}$	
and VBF2J phase space	$\min(\Delta \eta_{j\ell}) > 1.75$		$ \Delta y_{jj} > 4$	
		-miss	_	

$m_{\rm T}^W = \sqrt{2p_{\rm T}^\ell E_{\rm T}^{\rm miss}} (1 - \cos(\phi^\ell - \phi^{E_{\rm T}^{\rm miss}}))$

How SRs and CRs defined:

- Most cuts are optimized to have the maximum sensitivity, i.e. $|\Delta \eta_{\ell\ell}|$, $m_{\ell\ell}$, p_T^{lead} , etc.
- Cut on $max(m_T^W)$ (also $p_T^{sublead}$) is used to reduce W+jets and Z+jets contributions
- Cuts in VBF1J phase space are mainly used to gain VBF sensitivity
- Some cuts are inversed / changed / removed from SRs to define CRs, i.e. $|\Delta \eta \ell \ell|$ $(m_{\ell \ell})$, N_{b-jet} , etc.
- p_{T}^{sublead} mainly used to improve WW purity in WW CRs

Discriminating Variable

The **transverse mass** is defined as

$$m_{\mathrm{T}} = \sqrt{(E_{\mathrm{T}}^{\ell\ell} + E_{\mathrm{T}}^{\mathrm{miss}})^2 - |\mathbf{p}_{\mathrm{T}}^{\ell\ell} + \boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}|^2},$$

where

$$E_{\rm T}^{\ell\ell} = \sqrt{|{\bf p}_{\rm T}^{\ell\ell}|^2 + m_{\ell\ell}^2} \,. \tag{2}$$

Background Estimation

Event yields (from final fit): see table <u>1</u>

Plots (in SRs)

(1)

Limits (on $\sigma_H \times BR(H \rightarrow WW)$)

Top, WW: dominant backgrounds. Four normalization scale factors (NFs) are used for the main

backgrounds (Top and WW) NF^{WW-ggF}, NF^{Top-gg} WWCR: ggF-Inclusive • NFs are determined from final fit us-SR: ggF-Inclusive TopCR: ggF-Inclusive ing SRs and CRs NEWW-VBF1J • WW background in VBF 2J SR is es-WWCR: VBF 1-jet SR: VBF 1-Jet timated using MC prediction NF^{Top-VBF} **TopCR: VBF** SR: VBF 2-Jet

W+jets: Derived from data using "fake-factor" method (same as small contribution.

 $H \rightarrow WW$ coupling analysis). Fake-factors (FFs) derived using di-jets samples

	SR_{ggF}	Top CR_{ggF}	$WW \operatorname{CR}_{\operatorname{ggF}}$
WW	5300 ± 400	430 ± 90	1430 ± 120
Top-quark	4200 ± 400	20560 ± 210	900 ± 100
$ZI\gamma^*$	557 ± 25	46 ± 12	10.7 ± 1.0
W+jets	450 ± 120	260 ± 80	105 ± 30
VV	323 ± 12	37 ± 4	88.5 ± 3.4
Backgrounds	10790 ± 110	21330 ± 180	2530 ± 40
Data	10718	21333	2589
		1	

Table 1: Event yields

• Luminosity is improved and mass range extended with respect to previous results. • No evidence of a heavy Higgs boson is found in the mass range between 300 GeV and 3 TeV.

Conclusion

• Upper limits are set on $\sigma_H \times BR(H \rightarrow WW)$ in two scenarios: NWA and LWA.

• Aim at paper publication with Run 2 (full year 2015 + 2016) data (~ 36 fb^{-1}) soon.