Higgs measurements in high resolution channels with CMS

Junquan Tao (IHEP/CAS, Beijing) on behalf of the CMS collaboration

中國科學院為維約服為第 Institute of High Energy Physics Chinese Academy of Sciences

The Fifth Annual Conference on Large Hadron Collider Physics (LHCP2017)

Higgs channels in this talk

- Include latest results from the high resolution channels at CMS
 - \bullet H \rightarrow ZZ* \rightarrow 4 ℓ : CMS-PAS-HIG-16-041 and CMS-PAS-HIG-17-011 (anomalous coupling)
 - ♦ H→γγ: CMS-PAS-HIG-16-040 (New for LHCP2017!) and CMS-PAS-HIG-17-015 (differential fiducial cross-section)
- Will not cover results from H→Z(→2ℓ)γ (Run 1 result only) and H→μμ: rare decays

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

$H \rightarrow ZZ^* \rightarrow 4l$

CMS-PAS-HIG-16-041

➤ Signal signature

- 4 isolated leptons (e, μ) with excellent momentum resolution: two pairs of same flavour, opposite sign leptons (4e, 4μ , $2e2\mu$ or $2\mu2e$)
- Fully reconstructed mass peak
- Large S/B ratio (>2:1)

Backgrounds

- SM ZZ* (main background, irreducible) estimated from MC
- **Z+X**: fakes from Z+jets, Z+bb, ttbar, ... (reducible) estimated from data-driven methods

$H \rightarrow ZZ^* \rightarrow 4l$: Analysis strategy

- Events are split into seven categories according to Higgs productions modes to increase sensitivity, based on number of leptons, number of (b-) jets, missing energy and selections on kinematic discriminants (\mathcal{D}_{bkg}^{kin})
- Additional discriminants (D_{1jet} , D_{2jet} and $D_{VH} = max$ (D_{WH} , D_{ZH}), >0.5) are calculated for the selection of VBF and VH-hadronic tagged events

$H \rightarrow ZZ^* \rightarrow 4l$: Signal strength

Signal strength ($\mu = \sigma/\sigma_{SM}$) extracted with 2D $\mathcal{L}_{2D}(m_{4\ell}, \mathcal{D}_{bkg}^{kin}) = \mathcal{L}(m_{4\ell})\mathcal{L}(\mathcal{D}_{bkg}^{kin}|m_{4\ell})$

At $m_H = 125.09$ GeV, combined result:

$$\mu = \sigma/\sigma_{SM} = 1.05^{+0.15}_{-0.14}(\text{stat.})^{+0.11}_{-0.09}(\text{sys.}) = 1.05^{+0.19}_{-0.17}$$
CMS-PAS-HIG-16-041

Measured signal strength with fermions and bosons in 2D scan:

$$\mu_{ggH,ttH} = 1.20^{+0.35}_{-0.31}$$
 $\mu_{VBF,VH} = 0.00^{+1.37}_{-0.00}$ 5

$H \rightarrow ZZ^* \rightarrow 4l$: Mass and Width

- Mass measurement is based on 3D fit : $\mathcal{L}(m_{4\ell}, \mathcal{D}_{mass}, \mathcal{D}_{bkg}^{kin})$ invariant mass, expected uncertainty on mass and the discriminant
 - The on-shell Z is mass constrained
 - Systematic uncertainty dominated by uncertainty in the lepton momentum scale $125.26 \pm 0.20 ({
 m stat.}) \pm 0.08 ({
 m sys.}) \; {
 m GeV}$

Width measurement using on-shell production

If m_H floated, Γ_H < 1.1 GeV @ 95% CL

$H \rightarrow ZZ^* \rightarrow 4l$: Differential and fiducial

cross section

- Cross sections measured in fiducial phase space to maximize model independence
- ➤ Signal extracted using a 1D m(4ℓ) fit
- $\sigma_{fid} = 2.90^{+0.48}_{-0.44}(stat)^{+0.27}_{-0.22}(sys) fb$ $\sigma_{fid}^{SM} = 2.72 \pm 0.14 fb$
- Differential cross sections measured for pT(H), N(jets), and pT(jet), compared with predictions from powheg (NLO)

CMS-PAS-HIG-16-041

In agreement with SM predictions

$H \rightarrow ZZ^* \rightarrow 4l$: Anomalous couplings

- > Same lepton selections as cross section measurement
- Three event categories because of less statistics: VBF and VH selected using dedicated discriminators with production kinematics (New in Run 2), and untagged
- \triangleright **Discriminants** to suppress background, to separate BSM and SM, and to isolate interference of BSM and SM (Ω up to 13 observables)

$$\mathcal{D}_{bkg} = \frac{\mathcal{P}_{SM}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{bkg}(\vec{\Omega})} \qquad \mathcal{D}_{BSM} = \frac{\mathcal{P}_{SM}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{BSM}(\vec{\Omega})} \qquad \mathcal{D}_{int} = \frac{\mathcal{P}_{SM-BSM}^{int}(\vec{\Omega})}{\mathcal{P}_{SM}(\vec{\Omega}) + \mathcal{P}_{BSM}(\vec{\Omega})}$$

Effective cross-section ratios f_{ai} and coupling phases ϕ_{ai} : allowed 68% CL (central values with uncertainties) and 95% CL (ranges in square brackets) intervals f_{ai} =0 (1) indicates pure SM (BSM)

$f_{a3}\cos(\phi_{a3})$	
. 0.40	0.32
$f_{a2}\cos(\phi_{a2}) = 0.04^{+0.19}_{-0.04} [-0.69, -0.64] \cup [-0.04, 0.64] = 0.000^{+0.015}_{-0.014} [-0.08, 0.000]$	0.29
$f_{\Lambda 1}\cos(\phi_{\Lambda 1})$	0.15]
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma}) \qquad \qquad 0.16^{+0.36}_{-0.25} \ [-0.43, 0.80] \qquad \qquad 0.000^{+0.020}_{-0.024} \ [-0.49, 0.80]$	0.80]

Scattering amplitude describing the interaction between a spin-0 H boson and two spin 1 gauge bosons VV

CMS-PAS-HIG-17-011

Results consistent with SM

- > Signal signature
 - Two isolated and high ET photons
 - Final state fully reconstructed with high resolution
 - Mass resolution : σ~ 1-2% m_{γγ}
- ➤ Large backgrounds
 - Continuum $\gamma\gamma$ (irreducible)
 - Fakes from **γ+jet/jet+jet** (reducible)

- Photon energy: well calibrated and corrected, with $Z \rightarrow ee$ peak used as reference $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$
- Primary vertex: BDT for selection; Within 1cm \rightarrow negligible impact on resolution. $m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$
- Photon ID: BDT discriminates real/fake photons from jet fragment

$H \rightarrow \gamma \gamma$: Analysis strategy

- Event tagging: events are sorted into 14 categories depending on Higgs production modes and kinematics, to improve the analysis sensitivity
- > Top fusion (ttH): cut-based *leptonic* and mva-based *hadronic* (2cats)
- > VH: new in 2017, cut-based and split into *leptonic*, *hadronic*, *MET* (5cats)
- **VBF**: dijet + diphoton BDTs with categories based on significance (3cats)
- ➤ Untagged: split by *diphoton BDT score*, correspond to different S/B and invariant mass resolutions (4cats)

$H \rightarrow \gamma \gamma$: Mass distributions

All categories

All categories (weighted by their sensitivity)

$H \rightarrow \gamma \gamma$: Signal strength

CMS Preliminary

m_u profiled

Overall signal strength

$$\mu = 1.16^{+0.15}_{-0.14}(stat + syst) = 1.16^{+0.11}_{-0.10}(stat.)^{+0.09}_{-0.08}(syst.)^{+0.06}_{-0.05}(theo.)$$

- > Production mechanism signal strengths are SM-consistent
- Signal strengths measured in bosonic and fermionic parts are also SM-consistent

$H \rightarrow \gamma \gamma$: cross section

Cross section ratios measured for each process in the Higgs Simplified Template Cross Section (STXS) framework, for profiled m_H , compared to the SM expectation and its uncertainties

$H \rightarrow \gamma \gamma$: Coupling constants

Measurements of coupling modifiers to vector bosons and fermions (k_V , k_f) and to photons

and gluons (k_{γ}, k_{g})

Compatible with SM

$H \rightarrow \gamma \gamma$: Fiducial cross section

> 3 untagged event categories based on expected mass resolution

> Results: most precise fiducial measurement so far

$$\hat{\sigma}_{\text{fiducial}} = 84 \pm 11 \text{ (stat)} \pm 7 \text{ (syst) fb}$$

$$\sigma_{\text{fiducial}}^{theory} = 75_{-4}^{+4} \text{fb}$$

Fiducial volume:

$$p_{T1}/m_{\gamma\gamma} < 1/3, p_{T2}/m_{\gamma\gamma} < 1/4$$

$$|\eta_{1,2}| < 2.5$$

 $Iso_{gen1,2} \le 10 \text{ GeV} (\Delta R = 0.3)$

$H \rightarrow \gamma \gamma$: Differential fiducial cross section

Differential fiducial cross sections are measured for pT(γγ) and N(jets), compared with predictions from MADGRAPH aMC@NLO, ggH powheg + other modes (VBF+VH+ttH, "HX") from MADGRAPH aMC@NLO

Summary and outlook

- Latest results of Higgs measurements with H→ZZ*→4ℓ and H→γγ from Run 2 data (~36 fb⁻¹) collected by CMS detector at 13 TeV are presented
- Precision of its mass measured from H→ZZ*→4ℓ is a little better than the combined ATLAS+CMS result in Run1
- Measurements of its properties are largely compatible with SM expectations
- Results are still statistically limited
- > Expected > 100 fb⁻¹ to be delivered by the end of Run2
 - improve precision on the measurements

Thanks for your attention!

Backup slides

Mass: Run 1 combination

Phys. Rev. Letter 114, 191803(2015)

Higgs production and decays at LHC

- Cross sections are increased
 by ~2.3 except for ttH 3.8 from
 8 TeV to 13 TeV
- More than 100 fb⁻¹ is expected in Run 2 : ~25 fb⁻¹ in Run 1
- ➤ We expect 10 times more the BEH scalar events than Run 1

Cross section [pb] @125.09 GeV	ggF	VBF	WH	ZH	ttH	bbH
8 TeV	21.39	1.600	0.701	0.4199	0.1326	0.2015
13 TeV	48.52	3.779	1.369	0.8824	0.5065	0.4863
Ratio	2.27	2.36	1.95	2.10	3.82	2.41

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG

$H \rightarrow ZZ^* \rightarrow 4l$: Observables

- 4 lepton invariant mass : m₄₁
- Event-by-event mass uncertainty : $D_{mass} = \sigma_{m_{4}}/m_{4l}$, propagated from
- individual lepton p_T resolution (Corrected in data/MC using $Z \to II$ events)

 Matrix element kinematic discriminant: $\mathcal{D}_{bkg}^{kin} = \left[1 + \frac{\mathcal{P}_{bkg}^{q\bar{q}}(\vec{\Omega}^{H \to 4\ell}|m_{4\ell})}{\mathcal{P}_{sig}^{gg}(\vec{\Omega}^{H \to 4\ell}|m_{4\ell})}\right]^{-1}$

$H \rightarrow ZZ^* \rightarrow 4l$: Lepton energy scale uncertainty

Difference between the $Z \rightarrow \ell\ell$ mass peak positions in data and simulation normalized by the nominal Z boson mass obtained as a function of the pT and $|\eta|$ of one of the leptons regardless of the second for electrons (left) / muons (right).

- Events are separated into categories based on the p $_{\!\scriptscriptstyle T}$ and η of one of the two leptons in data/MC
- Fit di-lepton mass distributions to a Breit-Wigner parameterization convolved with a double-sided Crystal Ball (CB) function
- Extract offset in the measured peak position with respect to the nominal Z-boson mass
- Relative difference between data and simulation is propagated to the reconstructed four-lepton mass from simulated Higgs-boson events
- The uncertainty is determined to be 0.04% (0.3%) for the 4μ (4e) channels, respectively

$H \rightarrow ZZ^* \rightarrow 4l$: Mass resolution

With and without the kinematic refit using $m(Z_1)$ constraint

http://cms-results.web.cern.ch/cms-results/public-results/preliminary-results/HIG-16-041/index.html

order

$H \rightarrow ZZ^* \rightarrow 4l$: categorization criteria

- VBF-2jet-tagged category requires exactly 4 leptons. In addition there must be either 2 or 3 jets of which at most 1 is b-tagged, or at least 4 jets and no b-tagged jets. Finally, $\mathcal{D}_{2jet} > 0.5$ is required.
- VH-hadronic-tagged category requires exactly 4 leptons. In addition there must be 2 or 3 jets, or at least 4 jets and no b-tagged jets. Finally, $\mathcal{D}_{VH} \equiv \max(\mathcal{D}_{ZH}, \mathcal{D}_{WH}) > 0.5$ is required.
- VH-leptonic-tagged category requires no more than 3 jets and no b-tagged jets in the event, and exactly 1 additional lepton or 1 additional pair of opposite sign same flavor leptons. This category also includes events with no jets and at least 1 additional lepton.
- ttH-tagged category requires at least 4 jets of which at least 1 is b-tagged, or at least 1 additional lepton.
- VH-MET-tagged category requires exactly 4 leptons, no more than 1 jet and E_T^{miss} greater than 100 GeV.
- VBF-1jet-tagged category requires exactly 4 leptons, exactly 1 jet and $\mathcal{D}_{1jet} > 0.5$.
- **Untagged category** consists of the remaining events.

GeV

$H \rightarrow ZZ^* \rightarrow 4l : Yields$

Channel	4e	4μ	2e2 <i>µ</i>	4ℓ
$qar{q} o ZZ$	$192.7^{+18.6}_{-20.1}$	$360.2^{+24.9}_{-27.3}$	$471.0^{+32.6}_{-35.7}$	$1023.9^{+68.9}_{-76.0}$
gg o ZZ	$41.2^{+6.3}_{-6.1}$	$69.0^{+9.5}_{-9.0}$	$101.7^{+14.0}_{-13.3}$	$211.8^{+28.9}_{-27.5}$
Z+X	$21.1^{+8.5}_{-10.4}$	$34.4^{+14.5}_{-13.2}$	$59.9^{+27.1}_{-25.0}$	$115.4^{+31.9}_{-30.1}$
Sum of backgrounds	$255.0^{+23.9}_{-25.1}$	$463.5^{+31.9}_{-33.7}$	$632.6^{+44.2}_{-46.1}$	$1351.1^{+85.8}_{-91.2}$
Signal ($m_{\rm H}=125{\rm GeV})$	$12.0^{+1.3}_{-1.4}$	23.6 ± 2.1	30.0 ± 2.6	65.7 ± 5.6
Total expected	$267.0^{+24.9}_{-26.1}$	$487.1^{+33.1}_{-34.9}$	$662.6^{+45.7}_{-47.5}$	$1416.8^{+89.1}_{-94.3}$
Observed	293	505	681	1479

Mass>70 GeV

	Event category									
	Untagged	VBF-1j	VBF-2j	VH-hadr.	VH-lept.	VH-MET	tŧH	Inclusive		
gg o H	38.78	8.31	2.04	1.41	0.08	0.02	0.10	50.74		
VBF	1.08	1.14	2.09	0.09	0.02	< 0.01	0.02	4.44		
WH	0.43	0.14	0.05	0.30	0.21	0.03	0.02	1.18		
ZH	0.41	0.11	0.04	0.24	0.04	0.07	0.02	0.93		
tŧŦ	0.08	< 0.01	0.02	0.03	0.02	< 0.01	0.35	0.50		
Signal	40.77	9.69	4.24	2.08	0.38	0.11	0.51	57.79		
$q\bar{q}\to ZZ$	19.18	2.00	0.25	0.30	0.27	0.01	0.01	22.01		
gg o ZZ	1.67	0.31	0.05	0.02	0.04	0.01	< 0.01	2.09		
Z+X	10.79	0.88	0.78	0.31	0.18	0.30	0.27	13.52		
Total expected	72.41	12.88	5.32	2.71	0.86	0.43	0.79	95.41		
Observed	73	13	4	2	1	1	0	94		

Mass range 118-130GeV

$H \rightarrow ZZ^* \rightarrow 4l$: Fiducial phase space

Requirements for the H $ightarrow 4\ell$ fiducial phase space

Lepton kinematics and isolation	
Leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 20\mathrm{GeV}$
Next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10\mathrm{GeV}$
Additional electrons (muons) $p_{\rm T}$	$p_{\rm T} > 7(5) { m ~GeV}$
Pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$
Sum of scalar p_T of all stable particles within $\Delta R < 0.3$ from lepton	$< 0.35 \cdot p_{\mathrm{T}}$

Event topol	logy
-------------	------

Existence of at least two same-flavor OS lepton pairs, where leptons satisfy criteria above

Inv. mass of the Z_1 candidate $40 \,\text{GeV} < m_{Z_1} < 120 \,\text{GeV}$

Inv. mass of the Z_2 candidate $12 \, \text{GeV} < m_{Z_2} < 120 \, \text{GeV}$

Distance between selected four leptons $\Delta R(\ell_i, \ell_j) > 0.02$ for any $i \neq j$

Inv. mass of any opposite sign lepton pair $m_{\ell^+\ell'^-} > 4\,\mathrm{GeV}$

Inv. mass of the selected four leptons $105\,\mathrm{GeV} < m_{4\ell} < 140\,\mathrm{GeV}$

$H \rightarrow \gamma \gamma$: Photon energy

$$m_{\gamma\gamma} = \sqrt{2E_1 E_2 (1 - \cos \theta)}$$

- > Electro-magnetic calorimeter response
 - corrected for change in time
 - inter-calibrated to be uniform in η/ϕ
 - adjustment of absolute scale
- ➤ Energy and its uncertainty corrected for local and global shower containment: regression targeting E_{true}/E_{reco}
- ➤ Scale vs time and resolution calibration:
 Z→ee peak used as reference
- > Corrected energies and resolutions used in the analysis

$H\rightarrow \gamma\gamma$: Untagged

$H \rightarrow \gamma \gamma$: ttH

Objects

- Jets:
 - ak4PFCHS; pT>25 GeV; |η|
 <2.4
- Bjets:
 - ▲ PF CSV v2 (medium WP)
- Muons:
 - p_T>20 GeV; |η|<2.4; "tight muon"; minilso<0.06
- Electrons:

leptonic

 $t ar{t}
ightarrow b l
u_l ar{b} q ar{q}^{'} \ t ar{t}
ightarrow b l
u_l ar{b} l^{'}
u_{l'}$

- Selection
 - (sub)leading photon $p_T/M_{yy} > 0.5(.25)$
 - At least 2 jets with ΔR(j, γ or l) >0.4
 - At least one b-tagged jet
 - At least 1 lepton $\Delta R(I, \gamma) > 0.35$
 - For electron: |M_{eγ}-M_Z|>5 GeV
 - ▲ diphoton mva > 0.107

hadronic

- Preselection:
 - ▲ at least 3 jets
 - ▲ at least 1 loose b-jet
- 2-d optimization of diphoton MVA and ttH MVA
 - ▲ diphoton MVA > 0.577
 - ▲ ttH MVA > 0.75

Cut-based strategy replaced with mva to improve µttH sensitivity

$H \rightarrow \gamma \gamma : VH$

3 VH leptonic categories $W \rightarrow lv$ or $Z \rightarrow l\bar{l}$

Muons

Electrons

p_T>20 GeV; |η|<2.5;
 1.442<|η|<1.566;
 loose EGM ID

Photons

▲ (sub)leading
p_T/m_{γγ}>0.375(0.25)

Diphoton MVA cuts were tuned

WH leptonic:

- ▲ one lepton:
- $_{\perp}$ p_Tmiss > 45 GeV
- \triangle Δ R(γ , I) >1.0
- ▲ diphoton mva>0.28
- ▲ <=2 jets

ZH leptonic:

- two leptons:
- ▲ 70<m_{||}<110 GeV</p>
- Δ AR(γ, μ (e)) >0.5(1.0)
- ▲ diphoton mva>0.107

VH leptonic loose:

- one lepton:
- ▲ p_T^{miss} < 45 GeV</p>
- \triangle Δ R(γ , I) >1.0
- ▲ diphoton mva>0.28
- ▲ <=2 jets

m_{rr} (GeV)

hadronic category W->jj or Z->jj

Photons

- (sub) leading $p_T/m_{\gamma\gamma} > 0.5(0.25)$
- $p_T^{\gamma\gamma}/m_{\gamma\gamma} > 1.0$

Jets

- At least two jets
- ▲ p_T > 40 GeV
- ▲ 60<m_{ii} < 120 GeV
- $|\cos\theta^*| < 0.5$

Diphoton MVA > 0.906

▲ before flattening

(0.7) CMS-PAS-HIG-16-040

31

MET category

- $W \rightarrow lv$ (lepton out of acceptance) or $Z \rightarrow vv$
 - Arr p_T^{miss} > 85 GeV
 - $\Delta \phi(\gamma \gamma, p_T^{miss}) > 2.4$
 - diphoton MVA > 0.790 (0.6 before flattening)

$H \rightarrow \gamma \gamma$: VBF Tag

- Preselection (ICHEP): Two jets with $pT_{j1}>30GeV$, $pT_{j2}>20GeV$, $|\eta|<4.7$, $m_{ii}>250GeV$
- Main Structure: two parts, the Dijet BDT& Combined BDT
- ➤ Dijet BDT: separates VBF dijet from BG (incl. gluon fusion) using dijet kinematics
- ➤ Combined BDT: separates signal/BG diphotons using diphoton BDT, dijet BDT and scaled diphoton pT
- ➤ 3 VBF-tagged categories using the combined MVA with boundary optimisation: cuts on combined score are simultaneously optimised for max significance across all categories

$H \rightarrow \gamma \gamma$: signal efficiency and expected Nevt

Kinematic selection

• Leading photon : $E_T/m_{\nu\nu} > 1/3$

• Subleading photon : $E_T/m_{\gamma\gamma} > 1/4$

• Photons $|\eta| < 2.5$

➤ Preselection to be tighter than HLT, selections on photon ID MVA and diphoton BDT

CMS-PAS-HIG-16-040

-	SM 125 (GeV Higgs	hoson ov	acted sign	221									Bkg
Event Categories						4T T	AT ITA7	7A/T T 1	7111	TATE I	7111-1	_	_	
	Total	ggH	VBF	ttH/	bbH	tHq	tHW	WH lep	ZH lep	WH had	ZH had	σ_{eff}	σ_{HM}	(GeV ⁻¹)
Untagged 0	45.83	80.19 %	11.75 %	1.83 %	0.40 %	0.47 %	0.22 %	0.41 %	0.19 %	2.96 %	1.58 %	1.32	1.24	21.92
Untagged 1	480.56	86.81 %	7.73 %	0.56 %	1.15 %	0.13 %	0.02 %	0.47 %	0.27 %	1.81 %	1.04 %	1.47	1.32	924.21
Untagged 2	670.45	89.76 %	5.48 %	0.44 %	1.18 %	0.08 %	0.01 %	0.51 %	0.34 %	1.40 %	0.81 %	1.94	1.68	2419.53
Untagged 3	610.07	91.13 %	4.51 %	0.48 %	1.07 %	0.07 %	0.01 %	0.55 %	0.30 %	1.21 %	0.69 %	2.62	2.28	4855.00
VBF 0	10.01	21.69 %	77.09 %	0.34 %	0.35 %	0.29 %	0.03 %	0.03 %	0.00 %	0.19 %	-0.01 %	1.51	1.30	1.60
VBF 1	8.64	33.58 %	64.64 %	0.39 %	0.52 %	0.36 %	0.04%	0.13 %	0.03 %	0.24 %	0.07 %	1.66	1.38	3.25
VBF 2	27.76	50.14 %	46.46 %	0.81 %	0.73 %	0.53 %	0.07 %	0.20 %	0.06 %	0.71 %	0.27 %	1.61	1.36	18.89
ttH Hadronic	5.85	10.99 %	0.70 %	77.54 %	2.02 %	4.13 %	2.02 %	0.09 %	0.05 %	0.63 %	1.82 %	1.48	1.30	2.40
ttH Leptonic	3.81	1.90 %	0.05 %	87.48 %	0.08 %	4.73 %	3.04 %	1.53 %	1.15 %	0.02 %	0.02 %	1.60	1.35	1.50
ZH Leptonic	0.49	0.00 %	0.00 %	2.56 %	0.00 %	0.02 %	0.13 %	0.00 %	97.30 %	0.00 %	0.00 %	1.65	1.43	0.12
WH Leptonic	3.61	1.26 %	0.59 %	5.18 %	0.18 %	3.03 %	0.73 %	84.48 %	4.33 %	0.12 %	0.09 %	1.64	1.43	2.09
VH LeptonicLoose	2.75	9.16 %	2.70 %	2.34 %	0.57 %	1.81 %	0.13 %	63.62 %	18.87 %	0.56 %	0.23 %	1.67	1.56	3.50
VH Hadronic	9.69	57.38 %	3.68 %	3.61 %	0.35 %	1.39 %	0.27 %	0.17 %	0.42 %	20.47 %	12.26 %	1.38	1.31	7.22
VH Met	4.25	23.63 %	2.46 %	14.45 %	0.41 %	2.00 %	1.14 %	25.17 %	28.60 %	1.32 %	0.82 %	1.55	1.38	3.49
Total	1883.77	86.96 %	7.09 %	1.00 %	1.09 %	0.15 %	0.04 %	0.81 %	0.42 %	1.55 %	0.89 %	1.95	1.62	8264.73

Table 3: The expected number of signal events per category and the percentage breakdown per production mode in that category. The σ_{eff} , computed as the smallest interval containing 68.3% of the invariant mass distribution, and σ_{HM} , computed as the width of the distribution at half of its highest point divided by 2.35 are also shown as an estimate of the $m_{\gamma\gamma}$ resolution in that category. The expected number of background events per GeV around 125 GeV is also listed.

$H \rightarrow \gamma \gamma$: signal fractions

Rare decay

- \rightarrow SM: BR(H \rightarrow Z γ) = 0.1%
- \triangleright Similarity with $H \rightarrow \gamma \gamma$
- \triangleright Sensitivity limited by $Z \rightarrow 2\ell$

7+8 TeV (24.6 fb⁻¹)

- \triangleright Search in Z(ee)+ γ and Z($\mu\mu$)+ γ final states
- > 5 event cat's (jets, leptons, photon)
- Use invariant mass m_{III}
- Exclusion limit at 125 GeV:

Observed: >9.5 x BR_{SM} @95%CL

Expected: >10 x BR_{SM}

