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Introduction
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We do not know what New Physics will be like.

One of the main programs for the LHC Run 2 (and beyond)
is pursuing precision measurements in Higgs and electroweak 
processes:
                  search for small deviations from the SM.

Natural theoretical interpretation:
Effective Field Theory approach

It is important to present data in the most 
robust and model-independent way.
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From measurement to interpretation
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Data

Fiducial/diff. XS,

Simplified Template XS

Pseudo-observables

EFT

Explicit NP model

Unfolding

Combine different channels

Combine production and decay

Combine Higgs + EW + top physics +..

Combine with direct searches

With each step: 
- more assumptions on NP 
- more power to combine different datasets
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Higgs PO
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PO are defined from:

h

a decomposition of on-shell amplitudes (NWA),
based on Lorentz invariance and crossing symmetry,

and a momentum expansion around the physical poles in the amplitude,
assuming no new light states in the kinematical regime of interest.
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HPO for h→4f and EW production
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Described by the same on-shell correlation function  → same parametrisation (PO), 
in different kinematical regions and with different currents.

h

Jq

V/Jℓ

h

Jq

Jq’
h

Jℓ

Jℓ’

[Gonzalez-Alonso, Greljo, Isidori, Lindert, D.M. 1504.04018,1512.06135, YR4]
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Only 3 tensor structures allowed by Lorentz symmetry. Define a form factor for each one. 
PO are defined from the residues of the different pole structures (propagators):

To eq.(8) I added a (flavour universal) local interaction
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and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 

2
ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏

2
ZeR + ✏

2
ZeL + ✏

2
ZµL

+ ✏

2
ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �

2
`R`R)+

+ all the mixed terms

(2)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,
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In the SM
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e.g. h → e+e- μ+μ- A =i
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Parameter counting - PO
Higgs (EW) decay amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
h ! gg,2eg,2µg kZZ,kZg

,k
gg

,eZZ
eZµL ,eZµR e

CP
ZZ ,l

CP
Zg

,lCP
gg4e,4µ,2e2µ eZeL ,eZeR

h ! 2e2n ,2µ2n ,enµn

kWW ,eWW eZn

µ

, Re(eW µL) e

CP
WW , Im(eWeL)

eZne , Re(eWeL) Im(eW µL)

Higgs (EW) production amplitudes

Amplitudes Flavor + CP Flavor Non Univ. CPV
VBF neutral curr.

⇥

kZZ,kZg

,eZZ
⇤

eZcL ,eZcR
h

e

CP
ZZ ,l

CP
Zg

i

and Zh eZuL ,eZuR ,eZdL ,eZdR eZsL ,eZsR

VBF charged curr. [ kWW ,eWW ] Re(eWcL) Im(eWuL)
and Wh Re(eWuL) Im(eWcL)

EW production and decay modes, with custodial symmetry

Amplitudes Flavor + CP Flavor Non Univ. CPV

production & decays kZZ,kZg

,eZZ e

CP
ZZ ,l

CP
Zg

VBF and VH only eZuL ,eZuR ,eZdL ,eZdR

eZcL ,eZcR

eZsL ,eZsR

decays only k

gg

,eZeL ,eZeR , Re(eWeL) eZµL ,eZµR l

CP
gg

Table 2: Summary of the effective couplings PO appearing in EW Higgs decays and in the VBF and
VH production cross-sections (see main text). The terms between square brakes in the middle table are
the PO present both in production and decays. The last table denote the PO needed to describe both
production and decays under the assumption of custodial symmetry.

29

6

4

4

1

12 independent processes & many differential distributions.

Test UV symmetries!

1) All that can be measured in these processes (if NP is heavy) are these PO. 
2) A robust extraction of PO requires a global analysis.
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The SM Effective Field Theory

(Higgs is a SU(2)L doublet)

Leading deformations of the SM

+ L and B conservation

Contents

1 Introduction 1

2 Considerations about the EFT validity 4

2.1 Total cross section of WW and WZ processes 4

2.2 Limiting the physical scale of the process 5

2.3 On the interference between SM and BSM amplitudes 8

3 Facilitating the EFT interpretation of existing searches 10

3.1 W+W� ! `⌫``0⌫`0 10

3.2 W±Z ! `±⌫``+`� 13

3.3 Combination 15

4 An explicit model testing the EFT approach 15

5 Conclusions 18

A Interference between SM and dim-6 BSM amplitudes 20

B Helicity Amplitudes for V V production at the LHC 25

1 Introduction

Cubic and quartic self-interactions of the electroweak gauge bosons are present in the Stan-

dard Model (SM) due to the underlying non-abelian gauge symmetry, and are completely

fixed by the gauge couplings, namely, the electromagnetic coupling constant e and the

weak mixing angle s✓ ⌘ sin ✓W . This, however, is not the case in a general Beyond the

Standard Model (BSM) scenario. Therefore, processes that are sensitive to gauge boson

self-interactions are important tools used to search for nonstandard e↵ects.

In this work we focus on general BSM contributions to the cubic electroweak gauge

bosons interactions, employing the linear E↵ective Field Theory (EFT) framework, also

known as the Standard Model E↵ective Field Theory (SMEFT). In this model-independent

approach, the SM (with the Higgs embedded in an SU(2)L doublet) is extended by non-

renormalizable gauge-invariant operators with canonical dimensions D > 4 which encode

the e↵ects of some new physics with a mass scale ⇤ much larger than the electroweak scale.

The BSM e↵ects are thus organized as an expansion in 1/⇤, and the leading lepton-number-

conserving terms are O(⇤�2) generated by D = 6 operators in the SMEFT Lagrangian:
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+
X
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1

particle content  +  symmetries
as in the SM

59 independent dim-6 operators if flavour universality.
2499 parameters for a generic flavour structure.

[Buchmuller and Wyler ’86, Grzadkowski et al. 1008.4884, Alonso et al. 1312.2014]
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A step-by-step approach
i.e. how to successfully make sense of 2499 parameters

Any given on-shell process receives contributions 
from a limited number of operators  # ≲  O(10).

Hierarchy of precision. 
Some observables are much more precise than others. 
Impose these bounds before going on to less precise ones.
e.g. Corbett et al. [1211.4580], Pomarol and Riva [1308.2803], ecc..

Note: This process, when correctly done, is basis-independent.
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EFT: relating different observables

9

M. González-Alonso /10EFT analyses of  NP

Pseudo-observables in Higgs decays (linear EFT)

Exampl
e:

What’s the room for NP in 
Higgs decays taking into 

account LEP results?

Z

[MGA, Greljo, Isidori & Marzocca, arXiv:1504.xxxx]

Z couplings  δgZf

The same operator can contribute to different processes.

For example: OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (1)

To eq.(8) I added a (flavour universal) local interaction
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See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.
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Combine Z-pole, WW, and WZ data with Higgs data
to derive stronger constraints for the EFT.
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2(∂
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2

(
H†

↔
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O6 = λ|H|6

OW = ig

(
H†τa
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DµH
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DνW a

µν

OB = ig′YH
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H†

↔
DµH
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∂νBµν

O2W = −1
2(D
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µν)

2

O2B = −1
2(∂

µBµν)2

O2G = −1
2(D

µGA
µν)

2

OBB = g′2|H|2BµνBµν

OWB = gg′H†σaHW a
µνB

µν

OWW = g2|H|2W a
µνW

aµν

OGG = g2s |H|2GA
µνG

Aµν

O3W = 1
3!gϵabcW

a ν
µ W b

νρW
c ρµ

O3G = 1
3!gsfABCGA ν

µ GB
νρG

C ρµ

Table 1. The 14 CP-even operators made of SM bosons. The operators have been grouped in two
different categories corresponding to operators of the form (SM current)× (SM current) (left box)
and operators which are not products of SM currents (right box).

instead to the Higgs self-coupling which however is still not directly measured. For this

reason we did not include this observable in our list and did not compute its RG scaling.

The conventions in table 1 and in the rest of the text are as follows. We define

DρW a
µν = ∂ρW a

µν + gϵabcW b
ρW c

µν , H†
↔
DµH ≡ H†DµH − (DµH)†H, with DµH = ∂µH −

igτaW a
µH − ig′YHBµH. We have taken the hypercharge of the Higgs YH = 1/2 and

τa = σa/2 are the SU(2)L generators in the fundamental representation.

Note that the four precision parameters Ŝ, T̂ , W and Y , generated in our basis by four

bosonic dim-6 operators [22, 26], as we show in section 4.2, are sufficient to describe all pos-

sible dim-6 contributions to the e+e− → f+f− observables at LEP 1 and 2, only in the limit

of universal new physics. To be completely general about possible new physics scenarios

it would be necessary to include two more operators that contribute to the e+e− → f+f−

experiment [12, 18],

OL = (iH†↔DµH)(L̄Lγ
µLL) , O1,2

LL = (L̄1
Lσ

aγµL1
L)(L̄

2
Lσ

aγµL2
L) , (2.1)

where the former affects the SM coupling of the Z boson to the left-handed leptons, and

the latter affects the measurement of GF (recall that the super-indices denote the fermion

family). There are enough measurements to simultaneously constrain all six operators at

the per mille level [27]. The RG contributions of {OL,O1,2
LL} to the other operators have

been already computed and can be found in ref. [12]. We have not studied possible RG-

contributions of the operators of table 1 to {OL,O1,2
LL}, such RG-contributions could be used

to impose some bounds on the weakly constrained operators of table 1, since {OL,O1,2
LL},

are constrained at the permil level [18]. Such an analysis would require computing many

more elements of the full anomalous dimension matrix as well as enlarging the list of ob-

servables under consideration; this analysis would be interesting but beyond the scope of

the present project.

– 4 –
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EW + Higgs global fits
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Global fit in the ‘Higgs basis’ [LHCHXSWG 2015]

Higgs TGC
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2) = q

2 �m
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✏We, ✏Wµ, (complex)
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Z� ' 6.7⇥ 10�3
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g
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2✏WeL + 2cw✏ZeL
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(23)

|yfS |2 + |yfP |2 (24)

|✏�� |2 + |✏CP
�� |2 (25)

�f ��� (26)

J

µ
f (x) = f̄(x)�µf(x) (27)

�cz, c�� , cz� , cgg, �yu, �yd, �ye, �g1,z, �� , �z. (28)

4

[Falkowski, Gonzalez-Alonso, Greljo, D.M. PRL 116, 011801 (2016)]

   Once the strong LEP I constraints (≲1%) are imposed, 

Assuming MFV, only 10 independent combinations of coefficients 
contribute at tree-level to Higgs (Run-1) and LEP II (WW) observables.

[Corbett et al. 2013; J. Elias-Miro et al. 2013; 
Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]
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EW + Higgs global fits
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   Once the strong LEP I constraints (≲1%) are imposed, 

Assuming MFV, only 10 independent combinations of coefficients 
contribute at tree-level to Higgs (Run-1) and LEP II (WW) observables.

[Corbett et al. 2013; J. Elias-Miro et al. 2013; 
Pomarol Riva 2013; Gupta et al 2014; Falkowski 2015]

[Pomarol Riva 2013; Efrati et al. 2015; Berthier, Trott 2015]

LEP II (WW)
Higgs
LEP II + Higgs

!1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

∆g1,z

∆ΚΓ

Constraints on TGCs

LEP II data alone suffers from a flat 
direction in the TGC fit.

Higgs data (mainly via VH and VBF production) 
is sensitive to a different direction.

+

=

Together they provide strong and robust
constraints on the TGC.

[Falkowski, Riva  1411.0669]

[Falkowski 1505.00046]

[Falkowski, Gonzalez-Alonso, Greljo, D.M. PRL 116, 011801 (2016)]

All other coefficients have been marginalised.
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Top-Higgs sector
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[Degrande et al. 1205.1065, Maltoni et al. 1607.05330, …]

All these processes are affected (in different ways) by the same operators. 
The most relevant are:

A global analysis is necessary to disentangle the various contributions.

t t̅

gg → h (+j) th

tth

σ[tX tY hZ] in SMEFT

Illustrate usefulness of idealized partial tth x-sections for NP 

Relevant subset of dim=6 operators: 

Additional operators either yield suppressed contributions 
(GGh,hhh, bbtt) 

or are severely constrained from other observables (GGG)

3

cat. tBtBhB tBtRhB tRtRhB

�SM

cati
/�SM

tot

7.7⇥ 10�3 3.4⇥ 10�2 5.3⇥ 10�2

cat. tBtBhR tBtRhR tRtRhR

�SM

cati
/�SM

tot

2.4⇥ 10�2 0.111 0.765

Table I: Ratio of the cross section in each category over the
total pp ! t̄th for the LHC at 13 TeV, in the SM.

drops by two orders of magnitude going from (t
R

t
R

h
R

)
to (t

B

t
B

h
B

) and we see that is dominated by the ’rest’
category.

III. THE �[tXtYhZ] IN THE SMEFT

In this section we motivate the choice of the boosted
categories as idealised observables demonstrating their
sensitivity on di↵erent directions in the new physics pa-
rameter space. To this purpose ,we compute the six ide-
alised boosted categories using a well-defined subset of
operators in the SM E↵ective Field Theory (SMEFT).

Assuming that new particles lie at an energy scale ⇤
much larger than the typical energy of the process under
consideration, one can write an e↵ective field theory as
an expansion in powers of 1/⇤:

LEFT = LSM +
X

i

c
(6)
i

⇤2
O(6)

i

+
X

j

c
(8)
j

⇤4
O(8)

i

+ . . . (2)

In order to show how the six categories of are sensitive to
di↵erent directions in the EFT parameter space, we com-
pute the �[t

X

t
Y

h
Z

] using the following subset of SMEFT
dimension-6 operators:

LEFT � ��k
t

y
t

v2
Q̄3

L

t
R

H̃

✓
H†H � v2

2

◆
+ h.c.

�c
tg

g
s

y
t

4v2
Q̄

L

�µ⌫TAt
R

GA

µ⌫

H̃ + h.c. (3)

+
c4f
v2

X

i=1,2

⇥
(Q̄3

L

ui

R

)(ūi

R

Q3
L

) + (Q̄i

L

u3
R

)(ū3
R

Qi

L

)
⇤
,

where for convenience we rescaled the coe�cients so that
c
(6)
i

⇠ c v2/⇤2 and where �µ⌫ = 1
2 [�

µ, �⌫ ]. For a discus-
sion on the contribution of these operators in pp ! t̄th
see e.g. Ref. [11, 12]. In principle, a large number of
additional dimension-6 operators contribute at the tree-
level to this process. However, our goal is not to perform
a global EFT analysis, rather to show the sensitivity of
the proposed boosted categories. This can be done more
e�ciently using the operators listed above that, as we
will show, are su�cient to provide an e�cient span the
space of observables.

As far as four-fermion operators are concerned, some of
them can be tested in pp ! t̄t production [11–13], which
however cannot provide enough independent observables
to constrain all of them. In [12] it is argued that the four
fermion operators contribute to �(pp ! t̄th) via a single

Figure 1: Few examples of gg ! tt̄h (top row) and qq̄ ! tt̄h
(bottom row) diagrams with two insertions of dimension-6
operators. The red, blue, and green dot represent ctg, �kt,
and c

4f , respectively.

combination called c4, and the very similar direction also
enters in pp ! t̄t production. While this is true when
considering only the interference terms with the SM, this
statement is no longer true for the quadratic terms, which
can be dominant at high-p

T

. This implies that a general
EFT analysis of pp ! t̄th and pp ! t̄th (which is beyond
the purpose of this paper) should include independently
all the four fermion operators.
Other dimension-6 operators which can contribute

to pp ! t̄th are the anomalous triple-gluon coupling
GGG, the GGh operator, a deviation in the Higgs self-
interaction, as well as operators involving an initial-
state bottom quark. In principle, the GGG operator
could give a large contribution to both �(pp ! t̄th)
and �(pp ! t̄t) [13, 14]; however, it has been shown
recently that this e↵ect is negligible after the constraints
from multijet production at the LHC are taken into ac-
count [19]. The GGh and h3 deformations turn out to
have a negligible impact on �(pp ! t̄th), while the opera-
tors involving initial-state bottom quarks are suppressed
by the small bottom pdf.1

A. EFT expansion: double-insertions and squared
terms

As in similar high-p
T

and low-precision processes at
the LHC, such as V V , V h or V BF Higgs production, it
is expected that squared dimension-6 terms give a large
contribution to the cross section. This is indeed the case
for the chromo-dipole and four-fermi operators in Eq. (3).
While such terms are formally O(⇤�4) as the interference

1

The interference with the SM is given by

�tth/�tth
SM

' 1 + 0.015kgg � 3.2 · 10�4k�,

where k� = �/�
SM

and kgg is defined from the interaction �L =

� ✏SMgg
2v kggGA

µ⌫G
Aµ⌫h, with ✏SMgg = �6.5 · 10�3

, so that kgg = 1

describes the SM contribution to gg ! h. The quadratic terms

are even more suppressed, not being energy-enhanced.

anomalous top Yukawa 

chromo-dipole of top quark 

four-fermion operators

Krauss et al., 1611.00767 

see e.g. Maltoni et al., 1607.05330 

ggH coupling+
y2t cgg
v2

(H†H)GA
µ⌫G

Aµ⌫
(1)

OHf = i(H† $
DµH)f̄�µf = �1

2

p
g2 + g02Zµ(v + h)2f̄�µf (2)

To eq.(8) I added a (flavour universal) local interaction

F ff 0

1 � �ff 0

m4
Z

(3)

and keep also quadratic terms (the diagonal ones only, just for an example)

�e+e�µ+µ�

�SM
e+e�µ+µ�

= 2ZZ + ZZ (�2.5✏ZeR + 2.9✏ZeL � 2.5✏ZµR + 2.9✏ZµL + 1.5�`L`L � 2.7�`L`R + 1.1�`R`R)+

+ 6.4
�
✏2ZeR + ✏2ZeL + ✏2ZµL

+ ✏2ZµR

�
+ 8.4(�2`L`L + 2�2`L`R + �2`R`R)+

+ all the mixed terms

(4)

See that the interference of the ZZ term with the local interaction, as well as the quadratic

terms in the contact terms and local interactions, are not suppressed by the kinematics.

I think the only way to consistently neglect those is to assume an EFT power counting,

where ZZ � 1, ✏X ⇠ m2
Z/⇤

2
and �X ⇠ m4

Z/⇤
4
, and therefore to neglect the quadratic

terms.

h ! eReLµLµR / yeyµ (5)

O(x) = h(x) ē(x)�µe(x) µ̄(x)�
µµ(x) (6)

e = eL, eR, µ = µL, µR (7)

A =i
2m2

Z

vF
(ē�↵e)(µ̄��µ)⇥

✓
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+

✏Ze

m2
Z

gµZ
PZ(q22)

+
✏Zµ

m2
Z

geZ
PZ(q21)

◆
g↵�+

+

✓
✏ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ Z�✏

SM-1L
Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ��✏

SM-1L
��

e2QeQµ

q21q
2
2

◆
⇥ q1 · q2 g↵� � q2↵q1�

m2
Z

+

+

✓
✏CP
ZZ

geZg
µ
Z

PZ(q21)PZ(q22)
+ ✏CP

Z�

✓
eQµgeZ

q22PZ(q21)
+

eQeg
µ
Z

q21PZ(q22)

◆
+ ✏CP

��
e2QeQµ

q21q
2
2

◆
"↵�⇢�q2⇢q1�

m2
Z

�

(8)

1
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Signatures: 

σ[tX tY hZ] 

Resolved     
     

     
     

    B
oosted

Isolated leptons,  

photons,  

narrow (b-)je
ts

Plehn et al., 0
910.5472

Buckley et al., 1
310.6034

Moretti e
t al., 1

510.08468

Massive fat je
ts 

with substructure  

(2-) 3
-sub(b-)je

ts

Boosted tth signatures
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Incl. tt h
μt t h= 2.3 ± 1

(Run-1)

c4 = [-0.04, 0.08]

Incl. tt

Boosted tt h μtBtR hB
< 3

μtBtR hB
< 1.5

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20

-0.5

0.0

0.5

1.0

1.5

ctG

δk
t

pp→tth, LHC 13 TeV
The total tth rate provides only 
information on a single combination

More discriminating power can be obtained: 

from differential distributions, 

from boosted tth signatures.

Maltoni et al. 1607.05330

Plehn et al., 0910.5472, Buckley et al., 1310.6034, 
Moretti et al., 1510.08468 

PRELIMINARY

tB

Faroughy, Greljo, Isidori, Kamenik, D.M. - in progress

The boosted regime (fat top and Higgs jets) is very sensitive to dim-6 operators. 
Even a very limited precision could provide strong limits on the EFT.

fat jets
b

b

hB
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Summary

13

Higgs PO
Characterise all the measurable properties 
of on-shell Higgs boson processes 
in a robust and model-independent way.

SMEFT

(h→ 4f, VH and VBF)

- Allows to combine Higgs and non-Higgs measurement. 
- Global fits are necessary to get the most from data.

Higgs-EW

Z-pole, WW, WZ, 
h→4f ,γγ, Zγ, VH, VBF

Higgs-Top-Gluons

t t̅,  gg → h (+j), 
tth, th
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Thank you
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Prospects for PO in EW production

15

Flavor-independent PO probed in h→4ℓ decay. Focus on quark contact terms.

For simplicity let’s assume Minimal Flavor Violation.
Consider 7 PO:

PZ(q
2) = q2 �m2

Z + imZ�Z (16)

✏CP
X = Im ✏W `L = 0 (17)

X ! 1, ✏X ! 0 (18)

hZµZ
µ, hZµ@⌫Vµ⌫ hVµ⌫V

µ⌫ h"µ⌫⇢�Vµ⌫V⇢� hZµf̄�
µf, hZµ@⌫Vµ⌫ (19)

V = Z, � (20)

ZZ ,Z� ,�� , ✏ZZ ,

✏CP
Z� , ✏

CP
�� , ✏CP

ZZ ,

✏ZeL , ✏ZeR , ✏ZµL , ✏ZµR

(21)

WW , ✏WW , ✏CP
WW ,

✏We, ✏Wµ, (complex)

(22)

✏SM-1L
�� ' 3.8⇥ 10�3 ,

✏SM-1L
Z� ' 6.7⇥ 10�3

(23)

WW � ZZ = �2

g

⇣p
2✏WeL + 2cw✏ZeL

⌘
(24)

|yfS |2 + |yfP |2 (25)

|✏�� |2 + |✏CP
�� |2 (26)

�f ��� (27)

Jµ
f (x) = f̄(x)�µf(x) (28)

d�NLO

dm01dm02dx1dx2
=

d�LO

dm01dm02
!(x1)!(x2) (29)

d�NLO

dm1dm2
x =

m2

m2
0

(30)

�(obs)i =
X

j

↵ij
cj
⇤2

+O
✓

1

⇤4

◆
(31)

↵ij (32)

F (q21, q
2
2) ! F̃ (p2T1, p

2
T2) (33)

ZZ , WW , ✏ZuL , ✏ZuR , ✏ZdL , ✏ZdR , ✏WuL (34)

5

VBF: fit of the 2D pT distribution.

Zh, Wh: fit of the 1D pTV distribution.

LHC will be able to measure all the 
contact terms with percent accuracy!
Same conclusion also if no information on the 
total rate is retained.

kZZ

kWW

0 0.5 1. 1.5 2.

ϵZuL

ϵZuR

ϵZdL

ϵZdR

ϵWuL

-0.03 -0.02 -0.01 0. 0.01 0.02 0.03

Figure 5: Prospects for measuring Higgs PO in electroweak Higgs production at the HL-
LHC at 13 TeV with 3000 fb�1 of integrated luminosity. For VBF and Zh we considered the
h ! 2`2⌫ channel (with Z ! 2` in Zh) while for Wh we considered only the clean h ! 4`,
W ! `⌫ channel. The solid (dashed) intervals represent the 1� (2�) constraints in each PO,
where all the others are profiled. The red bounds are from VBF, the blue ones from Zh and the
green ones from Wh production. More details can be found in the main text.

3.3 Prospects for the Higgs PO in VBF at the HL-LHC

The extraction of the PO from the double di↵erential distribution F̃ (pTj
1

, pTj
2

) has to be
done with care. Here we make an attempt to perform such analysis. In the following we
estimate the sensitivity of the HL-LHC, operated at 13 TeV with 3000 fb�1 of data, on
measuring the PO assuming maximal flavor symmetry in a seven dimensional fit to ZZ ,
WW , ✏ZuL , ✏ZuR , ✏ZdL , ✏ZdR and ✏WuL . The ATLAS search for h ! WW ⇤ reported in
Ref. [42] considers the VBF-enriched category in which the detection of two jets consistent
with VBF kinematics is required. The expected yields in this category are reported in
Table VII of Ref. [42]. After the final selection cuts at 8 TeV with 20.3 fb�1 of integrated
luminosity, the expected number of Higgs VBF events in the SM is 4.7 (compared to 5.5
background events) in the eµ sample. Rescaling the number of expected events with the
expected HL-LHC luminosity (3000 fb�1) and cross section, we expect about 2000 SM
Higgs VBF events to be collected by each experiment. In the following, we make a brave
approximation and neglect any background events in the fit and assume that the HL-LHC
will observe a total of 2000 events compatible with the SM expectations.

16

HL-LHC with 3 ab-1
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WW/WZ production at LHC

6
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Figure 2: Results of the TGV analysis in terms of two-dimensional profile likelihoods from LHC Run I and from LEP [35]. We

also show the statistical combination of both.

semileptonic measurements are still based on the 7 TeV smaller data sets. An update of the semileptonic channels

should significantly contribute to a global TGV analysis.

The one-dimensional 95% CL constraints on the combination of Wilson coe�cients are

f
W

⇤2
2 [�1.5, 6.3 ] TeV�2 f

B

⇤2
2 [�14.3, 15.9 ] TeV�2 f

WWW

⇤2
2 [�2.4, 3.2 ] TeV�2 . (3.1)

The same results can also be expressed as

⇤p|f
W

| > 0.82 (0.40) TeV
⇤p|f

B

| > 0.26 (0.25) TeV
⇤p|f
WWW

| > 0.65 (0.56) TeV , (3.2)

where the bounds stand for the limits obtained assuming a negative (positive) Wilson coe�cient. Moreover, we can

present our results in terms of three independent TGV couplings [18], as described in Sec. II, the 95% CL constraints

then read

�gZ1 2 [�0.006, 0.026 ] �
�

2 [�0.041, 0.072 ] �
�,Z

2 [�0.0098, 0.013 ] . (3.3)

One aspect that we have tested is how robust our results are when we change our approximate treatment of fully

correlated theoretical uncertainties. It turns out that removing these correlations slightly shifts the f
W

range towards

negative values and weaken the bound on f
B

; both e↵ects are at the level of less than 0.5 standard deviations.

To allow for an easy presentation of the approximate fit results we perform a Gaussian fit to the multi-dimensional

probability distribution function of the three Wilson coe�cients relevant for TGVs. For the mean, one standard

deviation and the error correlation matrix we find

f
W

⇤2
= (2.2± 1.9) TeV�2 f

B

⇤2
= (3.0± 8.4) TeV�2 f

WWW

⇤2
= (0.55± 1.4) TeV�2

⇢ =

0

@
1.00 �0.012 �0.062

�0.012 1.00 �0.0012
�0.062 �0.0012 1.00

1

A . (3.4)

The corresponding Gaussian fit results to the multi-dimensional probability distribution function for the TGV cou-

plings in Eq. 2.5 are shown in Table I.

3. Comparison and combination with LEP

When we express our results in terms of the TGVs defined in Eq. (2.5) we can easily compare them and eventually

combine them with the global LEP analysis results [35]. We show the separated LHC Run I and LEP limits in

[Butter et al. 1604.03105]

LHC Run-1

Taken at face value, LHC already provides 
much stronger constraints than LEP.

(these operators generate two aTGC)

LEP-2+Higgs

-0.2-0.1 0.0 0.1 0.2 0.3 0.4
-1.0

-0.5

0.0

0.5

δg1,z

δκ
γ

CMS WW (8 TeV, 19.4 fb-1 )

Figure 4: Recast of the CMS analysis of W+W� ! l⌫l⌫ process at
p
s = 8 TeV and

19.4 fb�1 [17]. Bounds on the anomalous triple gauge couplings obtained expressing the

signal strengths in each bin up to quadratic (red-filled) and linear (red-dashed) order in

aTGC, respectively. No cuts on truth mWW are applied.

the dependence of the limits on the EFT cut is small up to mmax

WW ' 1 TeV and becomes

important only for lower cuto↵s. This implies that the bounds on aTGC obtained from

the 8 TeV WW searches without any cuto↵ o↵er approximately valid constraints for new

physics scenarios with mass scales above ⇠ 1 TeV, as long as dim-8 contributions can be

neglected. Interestingly enough, even for a relatively small mmax

WW , the obtained limits are

rather competitive with respect to those from the combined fit to Higgs and LEP2 data [15].

Finally, it is worth mentioning that the aTGC bounds that we obtain without any mWW

cut are in a good agreement with the limits quoted by the experimental collaboration [17]

and by Ref. [23].

In Fig. 4 we compare the sensitivities obtained from recasting the CMS 8 TeV WW

analysis by including (red-filled) or excluding (red-dashed) quadratic terms in dim-6 oper-

ators. We observe that the limits are much weakened when only linear terms are included,

in agreement with the discussion of Sec. 2.1. Therefore, in BSM scenarios where quadratic

dim-6 and linear dim-8 terms are of the same size (following the general EFT counting),

the latter are expected to generate similar changes in the aTGC bounds. This implies

that the aTGC bounds derived by including quadratic dim-6 terms largely overestimate

the constraints for such BSM scenarios. Let us also note that non-included QCD NLO

corrections might change qualitatively the interference terms, since the LO terms happen

to be suppressed [40]. Therefore, the result of the linear fit in Fig. 4 should be taken with

caution, but the main message (large sensitivity to quadratic corrections) is not a↵ected

by this caveat.

This is unlike the limits from Higgs+LEP2 combined dataset [15] where the linearized

fit (shown in blue) leads to similar results as the one including quadratic corrections. In fact,

the observables of this analysis (Higgs signal strengths and e+e� ! W+W� di↵erential

– 12 –

Quadratic

Linear

Falkowski, Gonzalez-Alonso, 
Greljo, D.M., Son  [1609.06312]

The bound is driven by quadratic terms. 
A detailed study of the EFT validity is in order.

We are interested in diboson production at the LHC, which in general is sensitive to

many (linear combinations of) e↵ective operators. They can a↵ect the process through

their modifications of the couplings of gauge bosons to fermions, the gauge boson propa-

gators or the cubic interactions of the gauge bosons. However, once we take into account

LEP1 constraints [1, 2], CP-conserving observables in diboson production are e↵ectively

controlled by 3 combinations of EFT parameters at O(⇤�2) in the SMEFT, which we can

choose to be the 3 anomalous Triple Gauge Couplings (aTGC), {�g
1,z, �� ,�z}, defined as

follows [3, 4]:

L
tgc

= ie
�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
A⌫ + ie

c✓
s✓

(1 + �g
1,z)

�
W+

µ⌫W
�
µ �W�

µ⌫W
+

µ

�
Z⌫

+ ie(1 + ��)Aµ⌫ W
+

µ W�
⌫ + ie

c✓
s✓

(1 + �z)Zµ⌫ W
+

µ W�
⌫

+ i
�ze

m2

W


W+

µ⌫W
�
⌫⇢A⇢µ +

c✓
s✓

W+

µ⌫W
�
⌫⇢Z⇢µ

�
, (1.2)

where c✓ =
q

1� s2✓ , �z = �g
1,z � s2✓

c2✓
�� . These aTGC can be computed in function of

Wilson coe�cients of D = 6 operators in Eq. (1.1), and they are formally of order

�g
1,z, �� , �z ⇠ c(6)

m2

W

⇤2

, (1.3)

so that in the SM limit all three aTGC vanish. Let us stress that in deriving this matching

one should be careful to redefine fields and input parameters in a way which satisfies the

property that after imposing LEP-1 bounds the aTGC are the only three unconstrained

parameters relevant to diboson production (see e.g. Refs. [1, 5–7]). The dictionary between

the aTGCs and Wilson coe�cients of D = 6 operators in various bases can also be found

in Appendix B (from Ref. [5]).

Any experimental observable (such as di↵erential cross section, number of signal events

in a bin, etc.) obtained from the e↵ective Lagrangian in Eq. (1.1) takes the following form

� = �SM+
X

i

 
c(6)i

⇤2

�(6⇥SM)

i + h.c.

!
+
X

ij

c(6)i c(6)⇤j

⇤4

�(6⇥6)

ij +
X

j

 
c(8)j

⇤4

�(8⇥SM)

j + h.c.

!
+ . . . .

(1.4)

It is important to notice that the D = 6 squared terms are of the same order in the EFT

expansion parameter ⇤ as the (neglected) interference of the D = 8 with the SM.

Precision constraints on aTGCs can be derived from W+W� production in LEP-

2 [8], see e.g. [1, 9] for EFT interpretations. Meanwhile, it has been pointed out that

the LHC Higgs data can also lead to meaningful indirect constraints on the aTGC in the

context of SMEFT [7, 10–14]. Recently, Ref. [15] reported a global fit in the SMEFT to

LEP-2 WW and LHC Higgs signal-strength data, by working consistently at O(⇤�2). In

particular, the analysis considered only D = 6 operator interference with the SM, under

the Minimal Flavor Violation (MFV) assumption, in which case the full set of relevant

linear combinations of D = 6 operator a↵ecting that analysis is limited to ten. The result
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EFT validity
Any experimental limit in the 
EFT approach will be on the 
combination

Ellis, Sanz 1410.7703; 
Greljo et al. 1512.06135; 

Plehn et al. 1510.03443,1602.05202; 
Contino et al. 1604.06444; 

Falkowski et al. 1609.06312; 
…

Bad precision at high energy 
could mean that no scenario is 
being probed consistently with 
the EFT. 

Increasing the precision enlarges 
the size of the triangle, 
accessing more weakly coupled 
models.

Limit consistent 
with EFT

This region is possibly excluded by same search, 
but using a ‘direct search’ approach.


