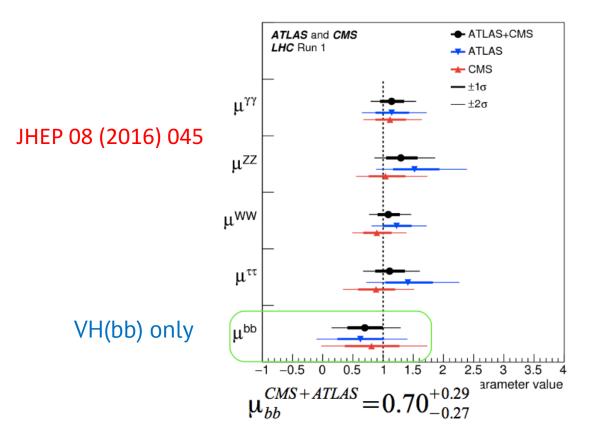


Higgs results with direct top and b-Yukawas with ATLAS

Zhijun Liang (IHEP, CAS)

On behalf of ATLAS collaboration

Institute of High Energy Physics Chinese Academy of Sciences


The fifth Annual Large Hadron Collider Physics conference (LHCP2017)

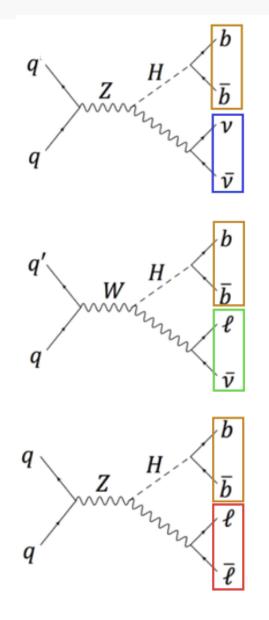
Outline

- Direct measurement of Higgs-bottom Yukawa coupling
 - VH, VBF H->bb and ttH(H \rightarrow bb)
- Direct measurement of Higgs-Top Yukawa coupling
 - ttH(bb)
 - ttH (multi-lepton), including $H \rightarrow W^+W^-$, $H \rightarrow \tau\tau$, $H \rightarrow ZZ$
 - $ttH(\gamma\gamma)$

Higgs-bottom Yukawa coupling

- H \rightarrow bb has the largest predicted branching ratio (~58%)
 - Test of Yukawa coupling between b-quarks and Higgs boson
- ATLAS+CMS Results in Run 1: observed significance 2.6σ (expected 3.7σ)

channels with a first Run-2 result


channel	Reference	Integrated Lumiosity
VH(bb¯)	ATLAS-CONF-2016-091	13.2 fb ⁻¹ (13TeV)
VBF H(bb) γ	ATLAS-CONF-2016-063	12.5 fb ⁻¹ (13TeV)

VH(bb) searches : 3 channels

 \succ

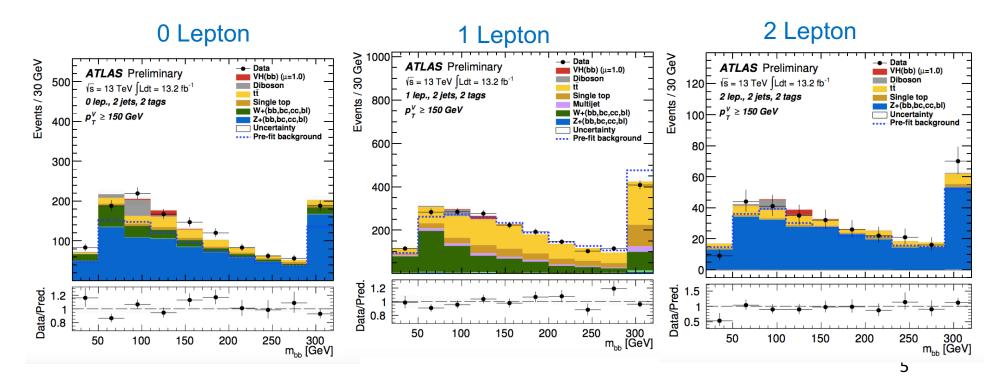
ν

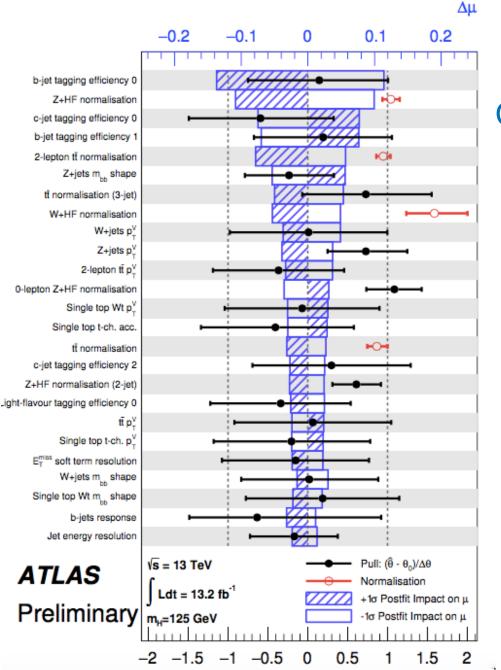
b

- > 0-lepton:
 E_T^{miss} > 150 GeV
 - 1-lepton: e/μ, p_τ>25 GeV Tight isolation Missing E_τ p_τ^v > 150 GeV
- 2-leptons:
 - Isolated ee, $\mu\mu$ $p_{\tau}^{1}>25 \text{ GeV}$, $p_{\tau}^{2}>7 \text{ GeV}$ No missing E_{τ} , m. compatible with m
 - m_{μ} compatible with m_{z}

Two jets anti-kT with R=0.4 P_T^{j1}>45 GeV p_T^{j2}>20 GeV

 \succ

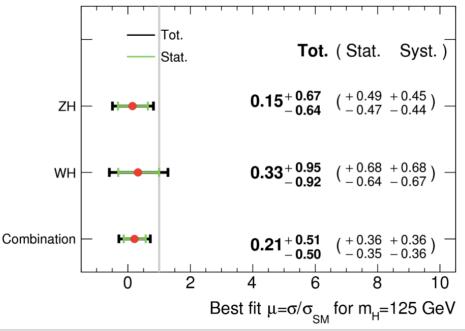

- Improved b-tagging with respect to Run 1:
 - Eff: 70%, light jet rejection: 380, charm rejection: 12
- > Analysis categories:


		0 lepton	1 lepton	2 leptons	
	2 into	$m^T > 150 CoV$	T > 1500 - V	$p_V^T < 150 \text{GeV}$	
2 jets	$p_V^T > 150 \text{GeV}$	$p_V > 150 \text{GeV}$	$p_V^T > 150 \text{GeV}$		
	2 into	T > 150 GeV	jets $p_V^T > 150 \text{GeV}$ $p_V^T > 15$	"T > 1500-W	$p_V^T < 150 \text{GeV}$
5 Jets	$p_V > 150 \text{GeV}$	$p_V > 150 \text{GeV}$	$p_V^T > 150 \text{GeV}$		

Major Background in VH(bb) searches

ATLAS-CONF-2016-091

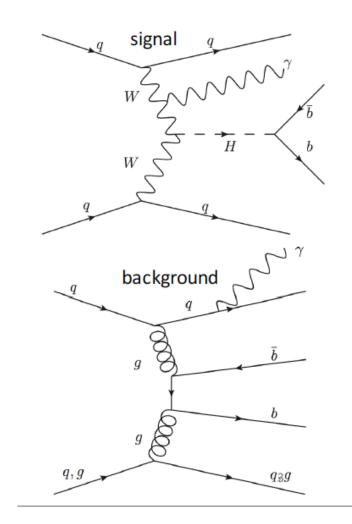
- Z+bjets dominates in 0, 2 lepton channels
- Top quark and W+jets in 1 lepton channel
- Multi-jet background
 - negligible in 0/2 lepton channels after anti-QCD cuts
 - Data-driven estimate in 1 lepton channel


VH(bb) searches : results ATLAS-CONF-2016-091

Combined signal strength with 13.2 fb⁻¹ at \sqrt{s} = 13 TeV $\mu_{VH,H \rightarrow bb} = 0.21^{+0.51}_{-0.50}$

- Systematic and statistical uncertainties of the same size
- Dominant systematics from b-tagging and
- background normalization modelling (W+jets, Z+jets, top)

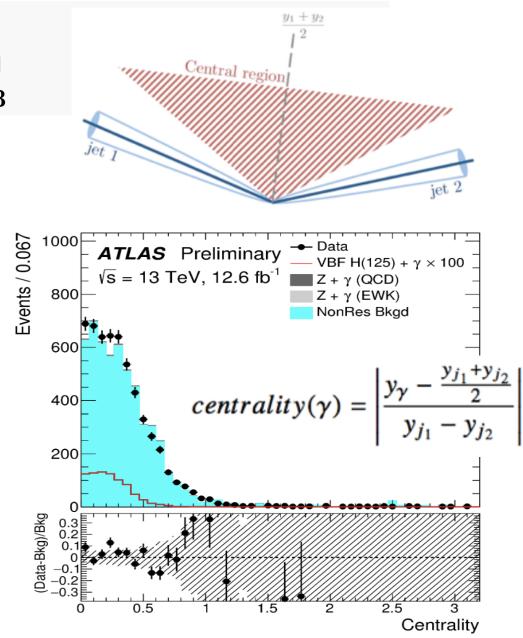
6


ATLAS Preliminary $\sqrt{s}=13 \text{ TeV}, \int L dt = 13.2 \text{ fb}^{-1}$

VBF H(bb) γ

ATLAS-CONF-2016-063

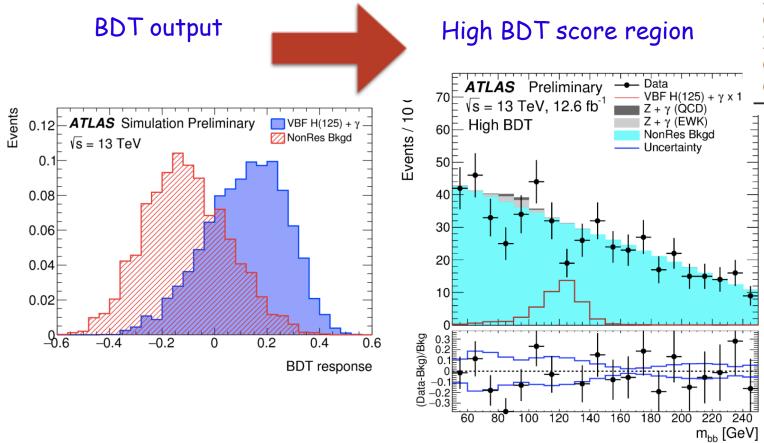
- Search for H->bb in VBF events containing a central photon
- Advantages of requiring a photon
 - extra handle for trigger
 - suppresses QCD background
 - Special VBF production
 - Sensitive to WWH VBF production
 - not sensitive to ZZH VBF
- Existing results for inclusive VBF (H->bb)
 - ATLAS in Run 1
 - observed (expected) upper limit : 4.4 (5.4) x SM
 - CMS in Run 1
 - observed (expected) significance : 2.2 (0.8) x SM
 - observed (expected) upper limit : 5.5 (2.5) x SM
 - CMS in Run 2 (2015 data)
 - observed (expected) upper limit: 3.0 (5.0) x SM



VBF H(bb) γ : event selection ATLAS-CONF-2016-063

- Trigger:
 - L1 trigger: single photon (pT > 25 GeV)
 - High level trigger: 4 jets pT > 35 GeV, mjj> 700 GeV
- Offline Selection:
 - Tight ID photon, pT > 30 GeV
 - 4 jets with pT> 40 GeV
 - 2 central(|n|<2.5) b-tagged jets
 - pT(bb)>80GeV
 - mjj> 800 GeV
- BDT discriminant

 $\Delta R(jet, \gamma), m_{jj}, \Delta \eta_{jj}, H_T^{soft}, jet width, \gamma centrality, p_T^{balance}$


- Define 3 regions with different S/B
- Fit m_{bb} in 3 regions

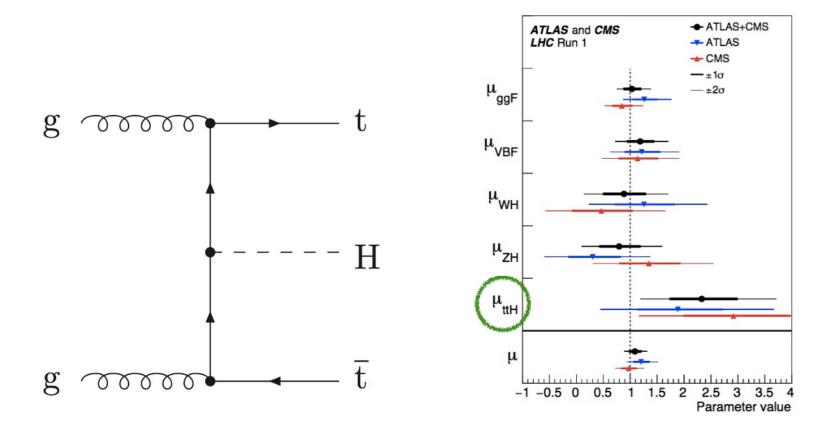
VBF H(bb) γ : signal extraction

ATLAS-CONF-2016-063

- Non-resonant background (γ +jets) estimated with 2nd order polynomial fit.
- Simultaneous fit on three signal regions
 - Low/medium/high BDT regions

Result	$H(\to b\bar{b})+\gamma jj$	$Z(\to b\bar{b}) + \gamma jj$	
Expected significance	0.4	1.3	
Expected <i>p</i> -value	0.4	0.1	
Observed <i>p</i> -value	0.9	0.4	
Expected limit	6.0 $^{+2.3}_{-1.7}$	$1.8 \begin{array}{c} +0.7 \\ -0.5 \end{array}$	
Observed limit	4.0	2.0	
Observed signal strength μ	-3.9 $^{+2.8}_{-2.7}$	0.3 ±0.8	

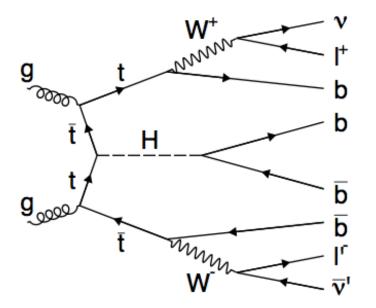
VBF H (bb) γ production cross section limit


Observed 95% CL limit:

4×(σ×BR)SM

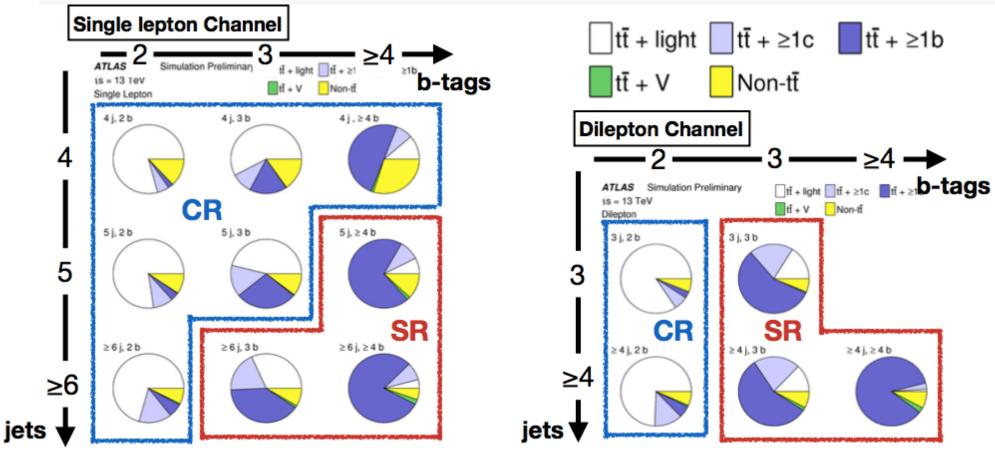
Higgs-top Yukawa coupling


- Direct measurement of Higgs-Top coupling via ttH production.
- ttH signal strength (μ_{ttH}) measured in LHC Run 1
 - 4.4 sigma observed significance (ATLAS+CMS run1 combination)
 - 2.0 sigma expected significance


JHEP 08 (2016) 045

ATLAS-CONF-2016-080

-Single Lepton Channel -----

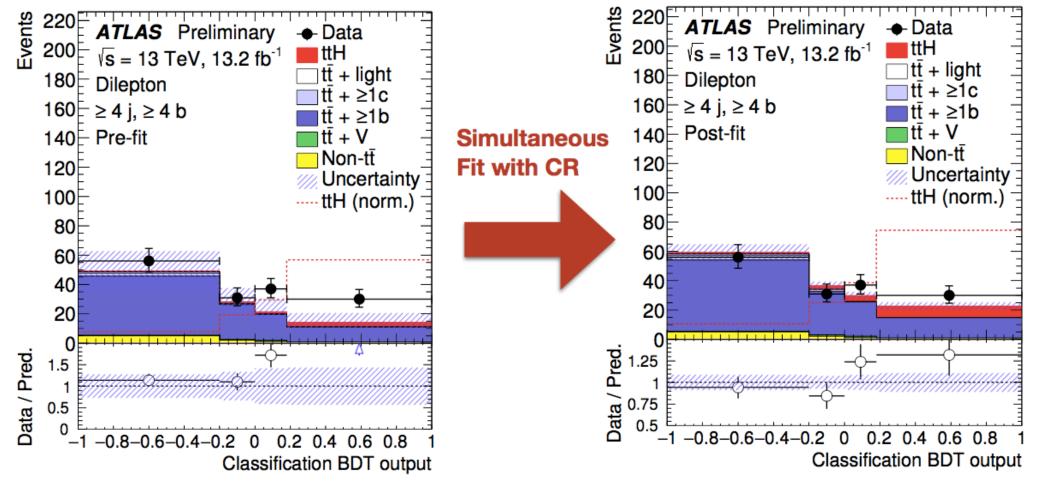

- 1 light lepton (e,µ)
- At least 4 jets
- At least 2 b-tagged jets

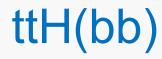
- Dilepton Channel

- 2 opposite charge light leptons (e,µ)
- At least 3 jets
- At least 2 b-tagged jets
- · Z mass veto

ttH(bb)

ATLAS-CONF-2016-080

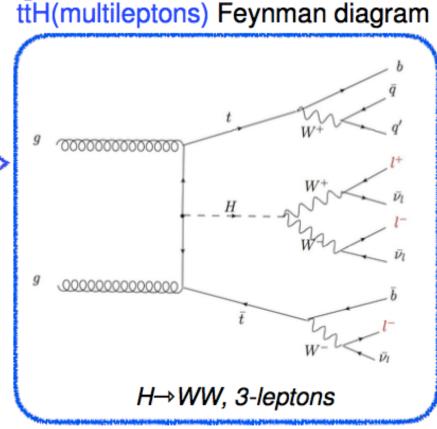



Signal Region (SR) : Enriched in signal. **Control Region (CR)** : Use to constraint backgrounds. $tt + \ge 1$ bjet, $tt + \ge 1$ cjet, and tt +light jets are the dominant backgrounds

ATLAS-CONF-2016-080

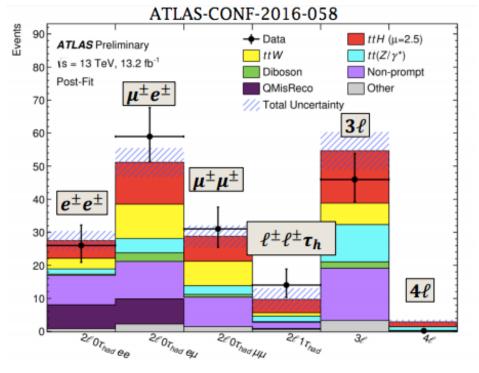
- In SR, "Classification BDT" is used to extract signal in
- Simultaneous fit to all region

- Summary of signal strength measurements
- Major systematics: tt+X modelling, jet flavor tagging

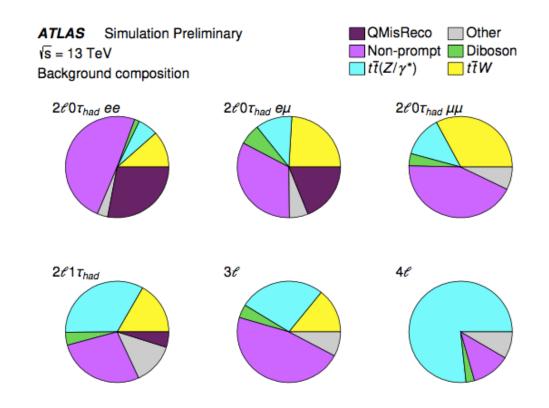

Uncertainty source	Δ	μ	
$t\bar{t} + \ge 1b$ modelling	+0.53	-0.53	7
Jet flavour tagging	+0.26	-0.26	
$t\bar{t}H$ modelling	+0.32	-0.20	
Background model statistics	+0.25	-0.25	$ ATLAS \text{ Preliminary ttH (bb), } \sqrt{s} = 13 \text{ TeV, } 13.2 \text{ ft}$
$t\bar{t} + \geq 1c$ modelling	+0.24	-0.23	— Tot.
Jet energy scale and resolution	+0.19	-0.19	—— Stat. Tot. (Stat. Syst.)
<i>tī</i> +light modelling	+0.19	-0.18	
Other background modelling	+0.18	-0.18	Dilepton 4.6 +2.9 (+1.4 +2.6)
Jet-vertex association, pileup modelling	+0.12	-0.12	
Luminosity	+0.12	-0.12	Single Lepton $H \rightarrow H$ 1.6 $^{+1.1}_{-1.1}$ ($^{+0.5}_{-0.5}$ $^{+1.0}_{-0.9}$)
$t\bar{t}Z$ modelling	+0.06	-0.06	Single Lepton $H - H$ I.0 -1.1 (-0.5 -0.9)
Light lepton (e, μ) ID, isolation, trigger	+0.05	-0.05	
Total systematic uncertainty	+0.90	-0.75	Combined H • H 2.1 $^{+1.0}_{-0.9} (^{+0.5}_{-0.5} +0.9}_{-0.5})$
$t\bar{t} + \ge 1b$ normalisation	+0.34	-0.34	
$t\bar{t} + \geq 1c$ normalisation	+0.14	-0.14	0 2 4 6 8 10 12 14 16 18
Statistical uncertainty	+0.49	-0.49	Best fit $\mu = \sigma^{t\bar{t}H}/\sigma^{t\bar{t}H}_{SM}$ for $m_{H} = 125 \text{ GeV}$
Total uncertainty	+1.02	-0.89	

ttH (multi-leptons) analysis: event selection and background

ATLAS-CONF-2016-058

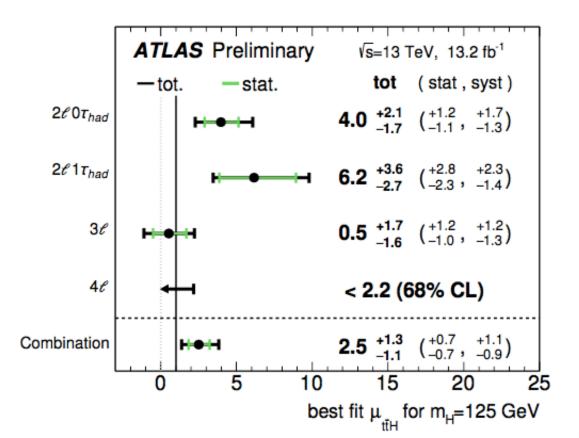

Higgs decay mode	Branching ratio [%]	
H→ bb	58.1	
H→ ww	21.5	С
Η→ ττ	6.3	
H→ ZZ	2.6	
Η⊸ γγ	0.23	

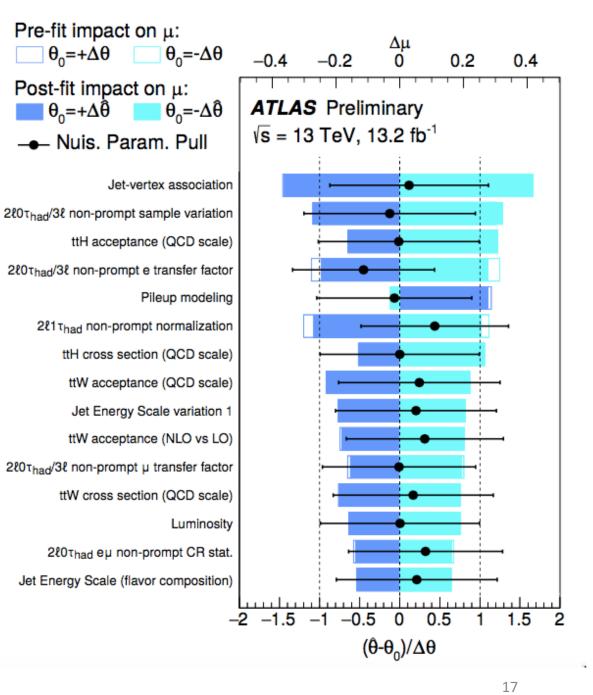
ttH(multileptons) channel has many possible final states → focus on those with clean signature and low backgrounds.


ttH (multi-leptons) analysis: event selection and background

- two same charge light leptons + no $\tau_{had} \rightarrow 2/0 \tau_{had}$
- (at least 5 jets and at least 1 bjet)
- two same charge light leptons + one $\tau_{had} \rightarrow 2/1\tau_{had}$
- (at least 4 jets and at least 1 bjet)
- three light leptons $\rightarrow 3/ (\geq 4jets, \geq 1bjet, \text{ or } 3jets, \geq 2bjets)$
- four light leptons $\rightarrow 4/ (\geq 2jets, \geq 1bjet)$

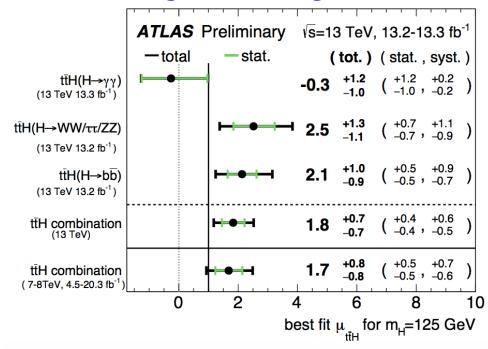
Cut and count analysis in 6 categories


ATLAS-CONF-2016-058



16

ttH (multi-leptons) analysis: Results ATLAS-CONF-2016-058


- Systematic uncertainty is dominated by
 - non-prompt background estimates in the 2/ $0\tau_{had}$, 2/ $1\tau_{had}$, and 3/ channels.
 - ttV modelling , pileup modelling

ttH analyses: combination

• Summary of the ttH signal strength measurements

Expected and observed significance

Channel	Significance		
	Observed $[\sigma]$	Expected $[\sigma]$	
$t\bar{t}H, H \to \gamma\gamma$	-0.2	0.9	
$t\bar{t}H, H \to (WW, \tau\tau, ZZ)$	2.2	1.0	
$t\bar{t}H, H \rightarrow b\bar{b}$	2.4	1.2	
$t\bar{t}H$ combination	2.8	1.8	

Summary

- The search for the Higgs decays to b-quarks in ATLAS
 - Using part of 2015-2016 data (~13fb⁻¹)
 - VH(bb) : Expected (observed) significance: 1.92 (0.42)
 - VBF H(bb)γ: first ATLAS result (ever) Expected (observed) 95% CL limit: 6 (4) times the SM expectation
- A search for ttH production process has been performed in three channels
 - Using part of 2015-2016 data (~13fb⁻¹)
 - ttH (bb), ttH (multileptons), and ttH ($\gamma\gamma$)
 - The best fit value of the ttH signal strength is 1.8 ± 0.7 .
 - Observed significance: 2.8 sigma (1.8 expected from SM).
- The results with full 2015-2016 dataset are coming soon.
- Stay Tuned!

ttH (multi-lepton) systematics

q

Uncertainty Source		$\Delta \mu$	
Non-prompt leptons and charge misreconstruction		-0.64	
Jet-vertex association, pileup modeling		-0.36	
<i>ttW</i> modeling	+0.29	-0.31	
$t\bar{t}H$ modeling	+0.31	-0.15	
Jet energy scale and resolution	+0.22	-0.18	
$t\bar{t}Z$ modeling	+0.19	-0.19	
Luminosity	+0.19	-0.15	
Diboson modeling	+0.15	-0.14	
Jet flavor tagging	+0.15	-0.12	
Light lepton (e, μ) and τ_{had} ID, isolation, trigger		-0.10	
Other background modeling		-0.11	
Total systematic uncertainty		-0.9	

 \overline{b}