

Search for exotic decays of the Higgs boson at CMS

Cécile Caillol (University of Wisconsin-Madison), on behalf of the CMS Collaboration

LHCP 2017, Shanghai

Why study exotic Higgs boson decays?

• Higgs boson observed in $H \rightarrow \gamma \gamma$, $H \rightarrow ZZ$, ... and $H \rightarrow \tau \tau$ decays!

- All measurements so far are compatible with the SM expectations
- But does the Higgs boson also decay in ways not allowed in the SM?

HIG-16-043

Why study exotic Higgs boson decays?

JHEP 08 (2016) 045

- Possibilities to highlight BSM physics in the scalar sector:
 - Indirect evidence through observation of deviations in the couplings of the H boson (but precision limited and increasing slowly with additional data)
 - Direct evidence through observation of exotic decays of the Higgs boson
- Large room still viable for exotic Higgs boson decays (~20%)

Outline

- Search for Higgs boson decays to SM particles not allowed in the SM:
 - non-diagonal elements of the Yukawa coupling matrix → lepton flavor violating Higgs decays

- Search for Higgs boson decays to non-SM particles:
 - Invisible Higgs boson decays, with H produced via ggF, VBF, or VH (H→invisible)
 - Higgs boson decays to light pseudoscalars/scalars, decaying to SM particles (H→aa)

LFV H \rightarrow µ τ /e τ /e μ : Status at LHCP 2016

• 2.4 σ excess for $H \rightarrow \mu \tau$ from CMS in Run-1:

- Best-fit branching fraction: 0.84 ± 0.38%
- Compatible with 1σ excess from ATLAS in Run-1
 - Best-fit branching fraction: 0.53 ± 0.51%
- Slight tensions with 1o deficit from CMS with 2015 data (but large uncertainty because only 2.3 fb⁻¹):
 - Best-fit branching fraction: -0.76 ± 0.83%
- No excess in $H \rightarrow e\tau$ and $H \rightarrow e\mu$ searches
- $H \rightarrow \mu \tau$ ($\mu \tau_h$ and $\mu \tau_e$ final states) and $H \rightarrow e \tau$ ($e \tau_h$ and $e \tau_\mu$ final states) analyses updated with full dataset collected by CMS in 2016 (see next slides) *HIG-17-001*

How to separate signal and backgrounds?

The MET is close to aligned with the visible tau decay product

The decay products have on average higher p_T than in $Z \rightarrow \tau \tau$ events (where part of the energy is lost by neutrinos in both tau decays), and in events with misidentified leptons (jet $\rightarrow e/\mu/\tau_h$ rate decreases with p_T)

Background estimation

- The backgrounds are estimated from MC samples, except for:
 - Jet→e/µ/τ_h background in the eτ_h/µτ_h final states(mostly W+jets, and a bit of QCD multijet): observed events with antiisolated τ_h reweighted with a misidentification rate depending on p_T, η, and reconstructed decay mode
 - QCD multijet in eµ final state: obtained from events with same-sign leptons (other MC processes subtracted from data), and reweighted by a scale factor that accounts for same-sign/opposite-sign differences

Validation in same-sign events

Validation in opposite-sign events with high $m_{\tau}(\mu, MET)$ and $m_{\tau}(\tau_h, MET)$ 7

Signal extraction

- Events divided into 4 categories to target different productions modes:
 - **0** jet: Targets $gg \rightarrow H$ events
 - 1 jet: Targets $gg \rightarrow H$ events produced in association with a jet
 - 2 jets, low m_{ii} : Targets gg \rightarrow H events with additional jets
 - 2 jets, high m_{ii} : Targets $qq \rightarrow H$ events
- BDT trained on the signal against a selection of background samples (reducible background for $e\tau_h$ and $\mu\tau_h$, ttbar and/or $Z \rightarrow \tau\tau$ for $e\tau_u$ and $\mu\tau_e$)

 Cross-check using a cut-based approach with the collinear mass as observable → compatible results but less sensitivity

Results of $H \rightarrow \mu \tau$ and $H \rightarrow e \tau$ searches

- No excess of data
- Best fit branching fraction: 0.00 ± 0.12%
- B(H→µτ) < 0.25% at 95% CL

- Slight excess of data (1.6 σ)
- Best-fit branching fraction: 0.30 ± 0.18%
- B(H→eτ) < 0.61% at 95% CL

Results of $H \rightarrow \mu \tau$ and $H \rightarrow e \tau$ searches

Search for invisible Higgs decays

- Many models allow Higgs decays to invisible particles, including:
 - SUSY models with Higgs decays to a pair of LSP

- Large extra dimension models with mixing of graviscalars with the Higgs boson
- Analyses target different Higgs boson production modes:

JHEP 02 (2017) 135

$Z \rightarrow ee/\mu\mu$:

- Di-lep mass compatible with $H \rightarrow inv$ Z boson mass
- Di-lep system recoiling
- against MET
- BDT-based analysis in 2016 data brings 10% additional sensitivity

EXO-16-052

VBF analysis:

- Based on a trigger that requires two jets ($p_{\tau} > 40$ GeV in 2015) separated by a large $\Delta\eta$ (3.5) and with a large invariant mass (> 600 GeV in 2015)
- Control regions with one or more leptons included in the fit to constrain the yield of the major backgrounds

Jets required to recoil against the MET to reduce QCD bkg

V(jj) and monojet analyses:

- Targets ggH with ISR, and VH with hadronic decays
- Simultaneous fit of MET distributions in signal and control regions

EXO-16-048

Results of invisible H boson searches

- Combination of 2011 (7 TeV), 2012 (8 TeV), and 2015 (13 TeV) results:
 - B(H→invisible) < 0.24/0.23 (obs./exp.) at 95% CL, where the largest sensitivity comes from the VBF analysis
- Z(II)+ MET analysis updated with full 2016 dataset:
 - B(H→invisible) < 0.40/0.42 (obs./exp.)</p>
- Monojet and V(jj) analyses updated with full 2016 dataset:
 - B(H→invisible) < 0.53/0.40 (obs./exp.)</p>

Overview of CMS $H \rightarrow$ aa searches

$H \rightarrow aa \rightarrow 4\mu$

HIG-16-035

- For $m_a < 2 m_{\tau}$ (~3.5 GeV), $a \rightarrow 2\mu$ is by far the largest a boson decay mode
- The dimuon pairs are required to have approximately the same mass in the signal region
- Dominant backgrounds: direct bbbar and J/psi production
- One event observed in the signal region using 2.8 fb⁻¹ of 2015 data, compatible with the background expectation: 0.74 ± 0.34 (stat.) ± 0.15 (syst.)

Conclusion

- Exotic decays of the Higgs boson would bring a direct evidence for the existence of BSM physics
- The 2.4 σ excess in the H \rightarrow $\mu\tau$ channel is ruled out by 2016 data collected by CMS, and an upper observed limit on B(H \rightarrow $\mu\tau$) of 0.25% is set
- No hint for new physics found when looking for H→aa and H→invisible decays, but these analyses will soon be updated with the data collected in Run-2

BACKUP

$H \rightarrow aa \rightarrow \mu\mu\tau\tau$ and $H \rightarrow aa \rightarrow \mu\mu bb$

HIG-16-015

- For $20 < m_a < 62.5$ GeV: decay products not collimated
- Search for a narrow dimuon resonance on top of a flat background (parametric fit)
- Main backgrounds estimated from data
- Latest results based on 20 fb⁻¹ of data collected in Run-1
- No excess of data wrt SM predictions

$H \rightarrow aa \rightarrow \mu\mu bb$