New results on collectivity with CMS

J. Milošević University of Belgrade Vinča Institute of Nuclear Sciences, Belgrade, Serbia on behalf of the CMS Collaboration

16.05.2017

LHCP 2017, Shanghai, China

Outline

Azimuthal anisotropy and motivation for a deeper insight

- ♦ Correlations between the higher order v_n measured with respect to their own plane with the mixed harmonics
- \diamond Linear and non-linear contribution to higher order v_n harmonics
- Comparison with hydrodynamic predictions with different η/s and initial conditions
- There is a fine splitting between cumulants of different orders
 - Induces appearance of the negative skewness predicted by hydrodynamics
 - Could help in constraining the initial conditions
 - Comparison with hydro predictions and other experimental results
- Conclusions

Anisotropy harmonics v_n

initial-state fluctuations

multi-particle correlations

even higher order cumulants

16.05.2017

Mixed harmonics - motivation

linear response (v_n = k_n ε_n) only for n = 2 and 3
higher harmonics (n > 3) have a non-linear part

$$V_{4} = V_{4L} + \chi_{422} (V_{2})^{2} \text{ where } V_{n} = v_{n} \cdot e^{in\Psi_{n}}$$

$$V_{5} = V_{5L} + \chi_{523}V_{2}V_{3}$$

$$V_{6} = V_{6L} + \chi_{622} (V_{2})^{3} + \chi_{633} (V_{3})^{2}$$

$$V_{7} = V_{7L} + \chi_{7223} (V_{2})^{2} V_{3}$$
linear non-linear: $v_{n} \sim f(\varepsilon_{2}, \varepsilon_{3})$

Mixed harmonics can separate linear and non-linear part. Example: v₅ wrt direction of v₂ and v₃

$$v_{5} \{\Psi_{23}\} = \frac{\operatorname{Re}\left\langle V_{5}V_{2}^{*}V_{3}^{*}\right\rangle}{\sqrt{\left\langle |V_{2}|^{2}|V_{3}|^{2}\right\rangle}} = \frac{\left\langle v_{5}v_{2}v_{3}\cos(5\Psi_{5}-2\Psi_{2}-3\Psi_{3})\right\rangle}{\sqrt{\left\langle v_{2}^{2}v_{3}^{2}\right\rangle}}$$
$$\chi_{523} = \frac{\operatorname{Re}\left\langle V_{5}V_{2}^{*}V_{3}^{*}\right\rangle}{\left\langle |V_{2}|^{2}|V_{3}|^{2}\right\rangle} = \frac{v_{5}\{\Psi_{23}\}}{\sqrt{\left\langle v_{2}^{2}v_{3}^{2}\right\rangle}}$$

PLB 744(2015)82

Mixed harmonics and non-linear contributions in PbPb

Mixed harmonics vs p_T

- ✤ higher order (n>3) mixed harmonics measured wrt lower order harmonics vs p_T
- ♦ first time are measured $v_5(\Psi_{23})$, $v_6(\Psi_{33})$ and $v_7(\Psi_{223})$
- ✤ a weak energy dependence

Linear vs non-linear part

✤ Larger contribution of non-linear part for odd v₅ and v₇ in 20-60% centrality bin
✤ For all v_n the difference is stronger for central (0-20%) wrt semi-central (20-60%)

Smaller statistical uncertainties from mixed harmonics

CMS PAS HIN-16-018

Non-linear response vs p_T

• First time are measured χ_{422} , χ_{523} , χ_{6222} , χ_{633} and χ_{7223}

- Odd χ_{523} and χ_{7223} have a stronger non-linear response wrt the other harmonics
- nearly no energy dependence

Mixed harmonics vs centrality and hydro predictions

- Strong centrality dependence for $v_4(\Psi_{22})$, $v_5(\Psi_{23})$, $v_6(\Psi_{222})$ and $v_7(\Psi_{223})$
- ↔ Weaker centrality dependence for $v_6(\Psi_{33})$
- Again, a weak energy dependence is seen
- ✤ Hydrodynamics predictions with $\eta/s = 0.08$ at 2.76 TeV describe $v_5(\Psi_{23})$ data rather well, but not $v_7(\Psi_{223})$

Non-linear response vs centrality and comparison with theory predictions

- No strong centrality and energy dependence
- Data for all harmonics are described well with AMPT predictions
- Strong sensitivity to the initial-state conditions
- Sensitivity increases with an increase of the harmonic order n

Non-linear response vs centrality and comparison with theory predictions

- No strong centrality and energy dependence
- Data for all harmonics are described well with AMPT predictions
- Strong sensitivity to the initial-state conditions
- Sensitivity to η/s

Fine splitting of harmonics and skewness

ε2

Different order cumulants vs centrality

- ✤ Rough ordering of v₂{2k} cumulants show an expected behavior: v₂{2} > v₂{4} ≈ v₂{6} ≈ v₂{8}
- Weakly visible splitting of the higher-order cumulants is more pronounced in peripheral collisions

Higher-order cumulants ratios

v₂{8}/v₂{4}

v₂{8}/v₂{6}

- ★ Earlier observation v₂{4} ≈ v₂{6} ≈ v₂{8} is consistent with the Gaussian model fluctuation of flow harmonics
- But, there is a fine splitting between higher-order cumulants which orders them as: v₂{4} > v₂{6} > v₂{8}
- The effect is on the percent level
- ✤ Hydrodynamic predictions for 2.76 TeV consistent with measurement at 5.02 TeV

v₂{6}/v₂{4}

Comparison to other measurements

- Due to a weak energy dependence between 2.76 and 5.02 TeV, higherorder cumulant ratios consistent between these two measurements
- CMS achieved better precision in these measurements

Skewness γ_1^{exp}

- If flow harmonic fluctuation is Gaussian, then skewness should be zero
- Non-Gaussian fluctuations makes splitting between v₂{4} and v₂{6} cumulants and lead to a negative γ₁^{exp}
- Hydrodynamic predictions for 2.76 TeV consistent with 5.02 TeV measurement

16.05.2017

Conclusions

★ The mixed higher-order flow harmonics $v_4(\Psi_{22}), v_5(\Psi_{23}), v_6(\Psi_{222}), v_6(\Psi_{33})$ and $v_7(\Psi_{223})$ and non-linear response coefficients

 χ_{422} , χ_{523} , χ_{6222} , χ_{633} and χ_{7223} are measured in 5.02 TeV PbPb collisions

- These results are sensitive to initial conditions and η/s at freeze-out, providing constraints on the theoretical description of heavy ion collisions
- Higher-order cumulants are splitted and ordered as: v₂{4} > v₂{6} > v₂{8}
- A negative skewness is observed

