Quarkonium as a Probe of QGP

Pengfei Zhuang Physics Department, Tsinghua University, Beijing

Why is quarkonium a thermometer of QGP ?

Heavy quark properties are not changed in hot medium. Electrons are used to probe the QED structure of a nucleon, heavy quarks can signal the QCD structure of the fireball in HIC.

electrons and heavy quarks as QED and QCD probes

Zhu, Bleicher, Huang, Schweda, Stoecker, Xu, Zhuang, PLB647 (2007) 366-370

Cancellation between suppression and regeneration !

How to increase the sensitivity of the thermometer ?

- Heavy Quark Potential
- **Quarkonium** p_t Distributions
- Quarkonia in Small Systems
- Quarkonia at FCC
- Multi-charmed Baryons

1

$V \rightarrow F$ from Lattice Simulation

Burnier, Kaczmarek, Rothkopf, JHEP1610, 032(2016):

- 1) extracting potential V=Re[V] + i Im[V] from lattice simulated spectral function
- \rightarrow Re[V] is close to F.
- 2) parametrization of the potential via an extended Gauss law
- \rightarrow Debye screening mass $m_D(T)$.

Other lattice simulation (H.Ohno): the limit temperature of J/ψ 1.25 T_c supports V=F.

The complex potential is used to describe Y suppression at LHC (G.Wolschin).

$V \rightarrow U$ from T-matrix Approach

Liu & Rapp, NPA941, 179(2015): T-matrix approach with complex potential:

[Lippmann-Schwinger equation]

by fitting the lattice calculated F, \Rightarrow the real potential \rightarrow F < Re[V] < U

Pengfei Zhuang

LHCP2017, Shanghai, May 15-20, 2017

How to Distinguish Hot Mediums ?

 $f(p) = f_{ini}(p) + f_{reg}(p)$

initial production: p_t broadening due to Cronin effect and leakage effect regeneration: p_t suppression due to energy loss and coalescence at later stage.

 p_t distribution can distinguish hot mediums at SPS, RHIC & LHC !

Dynamical approaches for quarkonia evolution in QGP: kinetic approach (Rapp et al.), Schroedinger-Langevin approach (Gossiaux et al.), Langevin approach (Blaizot et al.),

quarkonium motion

$$\partial f_{\Psi} / \partial \tau + \mathbf{v}_{\Psi} \cdot \nabla f_{\Psi} = -\alpha_{\Psi} f_{\Psi} + \beta_{\Psi}.$$

$$\begin{aligned} Zhu, Xu, Zhuang, PLB607, 107(2005), \\ Yan, Xu, Zhuang, PRL97, 232301(2006) \\ \alpha_{\Psi}(\mathbf{p}_{t}, \mathbf{x}_{t}, \tau | \mathbf{b}) &= \frac{1}{2E_{\Psi}} \int \frac{d^{3}\mathbf{p}_{g}}{(2\pi)^{3}2E_{g}} W_{g\Psi}^{c\bar{c}}(s) f_{g}(\mathbf{p}_{g}, \mathbf{x}_{t}, \tau) \Theta \left(T(\mathbf{x}_{t}, \tau | \mathbf{b}) - T_{c}\right), \\ \beta_{\Psi}(\mathbf{p}_{t}, \mathbf{x}_{t}, \tau | \mathbf{b}) &= \frac{1}{2E_{\Psi}} \int \frac{d^{3}\mathbf{p}_{g}}{(2\pi)^{3}2E_{g}} \frac{d^{3}\mathbf{p}_{c}}{(2\pi)^{3}2E_{c}} \frac{d^{3}\mathbf{p}_{\bar{c}}}{(2\pi)^{3}2E_{\bar{c}}} W_{c\bar{c}}^{g\Psi}(s) f_{c}(\mathbf{p}_{c}, \mathbf{x}_{t}, \tau | \mathbf{b}) f_{\bar{c}}(\mathbf{p}_{\bar{c}}, \mathbf{x}_{t}, \tau | \mathbf{b}) \\ \times (2\pi)^{4} \delta^{(4)}(p + p_{g} - p_{c} - p_{\bar{c}}) \Theta \left(T(\mathbf{x}_{t}, \tau | \mathbf{b}) - T_{c}\right), \end{aligned}$$

QGP evolution

 $\partial_{\mu}T^{\mu\nu} = 0, \quad \partial_{\mu}n^{\mu} = 0 + Lattice QCD equation of state$

Pengfei Zhuang

LHCP2017, Shanghai, May 15-20, 2017

Charmonium P_t Distributions

Liu, Xu, Zhuang, NPA834, 317C(2010)

Zhou, Xu, Zhuang, NPA834, 249C(2010)

ALICE Collaboration, PRL111, 162301(2013)

ALICE Collaboration, JHEP1605, 179(2016)

<u>Charmonia in p+A</u>

1) Cold medium effect explains J/ψ distributions reasonably well,

2) The difference between J/ψ and ψ' shows a sizeable hot medium effect on ψ' ,

3) Much more strong p_T broadening for ψ' , need to be confirmed experimentally.

4) Puzzle: J/ψ enhancement and ψ' suppression at backward rapidity!

Chen, Guo, Liu, and Zhuang, PLB765 (2017) 323

Charmonium Enhancement at FCC

Zhou, Chen, Greiner, Zhuang, PLB758, 434(2016)

Motivation to Study Multi-charmed Baryons

1) Ω_{ccc} and Ξ_{cc} are hardly produced in pp collisions, due to small production cross section $\sigma(\Omega_{ccc}) = 0.06 \sim 0.13$ nb at 7 GeV and 0.1~0.2 nb at 14 GeV (Bjorken 1986 and Chen, 2011) $\sigma(\Xi_{cc}) \sim 10$ nb at 1.8 TeV (PRL89 (2002) 112001).

SELEX Collaboration claimed the observation of Ξ_{cc} , but FOCUS, BaBar, Belle, LHCb failed to reproduce it in elementary collisions.

2) However, coalescence among uncorrelated charm quarks in A+A may significantly enhance the production probability,

 $N(\Xi_{cc}) \sim N_c^2$, $N(\Omega_{ccc}) \sim N_c^3$, $N_c \sim 100$ at LHC !

3) If they are discovered in A+A collisions, it is a unique signal of QGP!

4) Exotic baryon states at quark level

1) Borromean rings

2) Efimov states (PLB33, 563(1970)), discovered in cold atom gas (T.Kraemer et al., Nature 440, 315(2006)).

Significant Enhancement and Exotic States

He, Liu, Zhuang, PLB746, 59(2015), Zhao, He, Zhuana. arXiv:1603.04524. PLB. (2017)

Pengfei Zhuang

<u>Summary</u>

- 1) Quarkonium is still a smoking gun in probing QGP, the p_t distribution is sensitive to the fireball properties.
- 2) P+A: Dominant cold medium effects at RHIC, but a sizeable hot medium effect at LHC.
- 3) A+A: Quarkonium v_2 , $r_{AA} = \frac{\langle p_t^2 \rangle_{AA}}{\langle p_t^2 \rangle_{pp}}$ and $R_{AA}(p_t)$ can distinguish hot mediums at SPS, RHIC and LHC: from p_t enhancement at SPS to p_t suppression at LHC !
- 4) Charmed baryons: It is most probable to discover Ω_{ccc} and Ξ_{cc} in A+A, and the discovery is a unique signal of QGP formation.
- 5) Exotic baryon states: Borromean states and Efimov states of Ω_{ccc} at finite temperature, and possible realization in heavy ion collisions.
- 6) There are still some puzzles, like J/ψ enhancement in p+A and excess of low $p_t J/\psi$.

decay modes of Ω_{ccc}

Decay through weak interaction, for instance nonleptonic cascade decay mode (Chen 2011):

$$\begin{array}{ccc} \Omega_{ccc}^{++} \rightarrow & \Omega_{ccs}^{+} & + \pi^{+} \\ & \downarrow & \\ & \Omega_{css}^{0} & + \pi^{+} \\ & \downarrow & \\ & & \\ & \Omega_{sss}^{-} & + \pi^{+} \end{array}$$

semileptonic decay mode (Bjorken, 1986): $\Omega_{ccc}^{++} \rightarrow \Omega_{sss}^{-} + 3\mu^{+} + 3v_{\mu}$

Ξ_{cc} Decay mode and experiment status

- $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ (Observation reported by SELEX 2003)
- $\Xi_{cc}^+ \rightarrow D^0 p K^- \pi^+$ (Searched by Belle2006)
- $\Xi_{cc}^+ \rightarrow D^+ p K^-$ (Searched by FOCUS 2003, Belle2006)
- $\Xi_{cc}^+ \to \Xi_c^+ \pi^+ \pi^-$ (Searched by BarBar2006)
- $\Xi_{cc}^+ \to \Xi_c^0 \pi^+$
- "The improved LHCb and Belle II (2019) is promising in observing Ξ_{cc} "

Search for the Doubly Charmed Baryon at LHCb, Ph.D thesis, ZHONG Liang (2015)