New results on quarkonium at 5.02 TeV with CMS

Songkyo Lee (Korea Univ.) on behalf of the CMS Collaboration

5th Large Hadron Collider Physics Conference 2017 Shanghai Jiao Tong University, Shanghai (China) May 18th 2016

Why quarkonia?

- Quarkonia: bound states of a heavy quark and its antiquark
- Important probes of initial and final state nuclear effects
 - Mainly produced at the early stage ($m_c >> \Lambda_{QCD}$),
 - \rightarrow experience the whole evolution of medium
 - by gluon-gluon hard scattering processes
 - \rightarrow sensitive to gluon PDFs

Nuclear effects on quarkonia

May 18th 2017

Songkyo Lee, LHCP 2017

Quarkonia results at 5.02 TeV

	Charmonia	Bottomonia		
pPb	$J/\psi R_{pPb}$ EPJC 77 (2017) 269 Published last month! $\psi(2S) R_{pPb}$ CMS-PAS-HIN-16-015 $Today$	Y(nS) / Y(1S) DR JHEP 04 (2014) 103		
PbPb	ψ(2S) / J/ψ DR Today PRL 118 (2017) 162301 Published last month!	Y(nS) / Y(1S) DR CMS-PAS-HIN-16-008 Y(nS) R _{AA} Today CMS-PAS-HIN-16-023		
	 Nuclear modification fac In heavy-io 	tor • Double ratio n nS/1S in heavy		

May 18th 2017

Songkyo Lee, LHCP 2017

In pp

DR =

 $R_{heavy-ion} =$

nS/1S in pp

Charmonia

Prompt vs. Nonprompt

prompt J/ψ

- Directly produced J/ψ
- Feed down from $\psi(2S)$ and X_c

nonprompt J/ψ

From the decay of B hadrons
 (Lifetime of B ~ O(500) μm/c)

• Pseudo-proper decay length

 $l_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_{\rm T}(\mu^+\mu^-)} \quad \text{PDG value}$

transverse distance between PV and SV in laboratory frame

- IP resolution of CMS
 - transverse ~ 25-90 µm
 - longitudinal ~ 45-150 μm

Prompt charmonia selection

• $\psi(2S)$ analysis: nonprompt rejection by a cut on $\ell_{J/\psi}$

CMS-PAS-HIN-16-015 PRL 118 (2017) 162301

 Data CMS cut efficiency — Total fit Preliminary Events/ (0.05 GeV/c²) --- Background $4 < p_{T} < 6.5 \text{ GeV/c}$ $-2.4 < y_{CM} < -1.93$ J/ψ Prompt B fraction 10^{3 ∟} Non-prompt ψ(2S) B Ι_{J/ψ} cut 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 m_{µµ} (GeV/c²)

≬s_{NN} = 5.02 Te\

- 2D fit is not applicable due to the low statistics
- MC-based $\ell_{J/\psi}$ cut study
 - Keep ~90 % of prompt
 - Remove ~80 % of nonprompt

May 18th 2017

pPb 34.6 nb⁻

 10^{4}

Prompt J/ ψ R_{pPb} vs. pt

- $R_{pPb} \gtrsim 1$ in mid- and backward y_{CM}
- Suppression at forward and low p_T is suggested \rightarrow smaller x regions

Prompt J/ ψ R_{pPb}: theory vs. experiement

- $R_{pPb} \gtrsim 1$ in mid- and backward y_{CM}
- Suppression at forward and low p_T is suggested \rightarrow smaller x regions
- nPDF models marginally lower but describes data

Prompt J/ ψ R_{pPb}: exp vs. exp

- CMS results extends previous LHC measurements
 - Forward y_{CM} and lower p_T : $R_{pPb} < 1$
 - Mid-y_{CM}: R_{pPb} ~ 1
 - Backward y_{CM} and higher p_T : $R_{pPb} > 1$

FW

BW

EPJC 77 (2017) 269

Prompt $\psi(2S)$ R_{pPb} vs. y_{CM}

- $\psi(2S) R_{pPb} < J/\psi R_{pPb}$ in all bins
- Final state effects on $\psi(2S)$ at backward? (e.g., comover breakup)

$\psi(2S)$ to J/ ψ DR vs. p_T in PbPb

- $\psi(2S)$ is suppressed with respect to J/ψ
- No significant p_T dependence

PRL 118 (2017) 162301

$\psi(2S)$ to J/ ψ DR vs. centrality in PbPb

1.6 < |y| < 2.4 3 < p_T < 30 GeV/c

- No strong centrality dependence at 5.02 TeV
- Double ratios at 5.02 TeV are consistently lower than those at 2.76 TeV in 1.6 < |y| < 2.4 and 3< p_T < 30 GeV/c (right)

$\psi(2S)$ to J/ ψ DR: theory vs. experiments

- Transport Model
 - $\psi(2S)$ regenerated later and more affected by flow than J/ ψ
 - Larger transverse flow at 5.02 TeV than 2.76 TeV

Bottomonia

Bottomonia as golden probes

- Three Y states are characterized by similar kinematics but have different binding energies
- Negligible nonprompt fraction and less regeneration compared to charmonia

May 18th 2017

Songkyo Lee, LHCP 2017

Y(nS) R_{AA} vs. centrality

- All three states are suppressed with increasing centrality
- $R_{AA}[\Upsilon(1S)] > R_{AA}[\Upsilon(2S)] > R_{AA}[\Upsilon(3S)] \rightarrow Sequential melting$
- Hydrodynamic model overlaid

Y(1S) R_{AA}: 2.76 vs. 5.02 TeV

- Indication of larger suppression at higher energy
- Hydrodynamic model
 - → initial medium T: ~550 MeV (2.76 TeV), ~630 MeV (5.02 TeV)

$Y(nS) R_{AA} vs. p_T and |y|$

- No strong dependence on p_{T} and y
- The p_T dependent Y(1S) R_{AA} shows a slight increase

CMS-PAS-HIN-16-023

Summary

- pPb collisions
- J/ψ indicates shadowing at forward and low p_T
- Different nuclear effects
 on ψ(2S) from J/ψ

• PbPb collisions

- $\psi(2S)$ suppressed w.r.t. J/ ψ \rightarrow Separate R_{AA} needed
- Y(nS) states agree with sequential melting scenario

ψ(nS)

Songkyo Lee, LHCP 2017

Y(nS)

Backups

Parton Distribution Functions

- Gluon density significantly rises with decreasing x
- When too many gluons are squeezed in a confined hadron, gluons start to overlap and recombine \rightarrow <u>saturation</u> in gluon distributions

Nuclear PDFs

- nPDF modified compared to proton, especially at low x
- Measurements in low x is crucial to constrain nPDF models

arXiv:1507.04418

CMS coverage

- CMS at LHC allows the measurement of quarkonia with
 - Large production cross section
 - Wide coverage in x

May 18th 2017

Songkyo Lee, LHCP 2017

QGP effects

- Debye Screening
 - Sequential melting: thermometer for QGP
 - <u>Suppression</u> of charmonium yields compared to pp

- Regeneration
 - Combination of initially uncorrelated charm and anticharm quarks
 - Enhancement of charmonium yields compared to pp

Sequential melting

Resonance	J/ψ	Ψ'	Υ(1S)	Υ(2S)	Υ(3S)
Mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
Radius [fm]	0.25	0.45	0.14	0.28	0.39

Signal and background modeling

Prompt J/ ψ cross sections

May 18th 2017

Songkyo Lee, LHCP 2017

Prompt J/ψ R_{pPb} vs. y_{CM}

- Lower p_T : possible decrease of R_{pPb} for increasing y_{CM}
- Higher p_T : R_{pPb} is above unity for the whole y_{CM} range

Prompt J/ ψ R_{FB} vs. pt

EPJC 77 (2017) 269

- An observable free from pp reference
- Luminosity uncertainty cancels
- Useful to study centrality dependence without N_{coll} information

- $R_{FB} < 1$ for $p_T \lesssim 7.5$ GeV/c and $|y_{CM}| > 0.9$
- Indication of a modest decrease with $|y_{CM}|$ in 6.5 < p_T < 10 GeV

R_{FB} vs. event activity

- E_T^{HF|η|>4}: raw transverse energy deposited in
 Hadron Forward Calorimeter at 4 < |η| < 5.2
- Centrality-like characterization in pPb

Prompt J/ ψ R_{AA} vs. centrality, p_T, lyl

- Stronger suppression in more central collisions
- No significant rapidity or p_T dependence

EJPC 77 (2017) 252

Prompt J/ ψ R_{AA}: CMS vs. ALICE

EJPC 77 (2017) 252

• Complements ALICE (starting from $p_T = 0$ GeV/c)

Open vs. Hidden charm

EJPC 77 (2017) 252

- J/ψ and D show a similar suppression
- Modification is an admixture of several mechanisms, and Each processes would be <u>different</u> for open and hidden charm
 - e.g. Debye screening, regeneration, nuclear effects, feed-down, etc

Prompt $\psi(2S)$ R_{pPb} vs. p_T

May 18th 2017

Songkyo Lee, LHCP 2017

$\psi(2S)$ to J/ ψ DR vs. y in p(d)A

RHIC

LHC

- Hint for stronger suppression of $\psi(2S)$ w.r.t. J/ ψ at backward
- Co-mover model qualitatively agrees with data

$\psi(2S)$ to J/ ψ DR vs. y: ATLAS

- Double Ratios consistent with unity
- Higher p_T and mid-y compared to ALICE and LHCb

JHEP 03 (2016) 133

the dense medium created)

η density of charged particles in pPb

May 18th 2017

Transport model for $\psi(2S)$ to J/ ψ DR

arXiv.1609.04848

- Most $\psi(2S)$ regenerated later than J/ψ
- transverse-flow pushes $\psi(2S)$ to higher p_T
- DR >1 possible while to total yield $\psi(2S)$ remains smaller than that of J/ ψ

Transport model for $\psi(2S)$ to J/ ψ DR

arXiv.1609.04848

Y(nS) cross sections

- **pPb vs pp** : Excited states are suppressed more than Y(1S) in pPb compared to pp
- **PbPb vs pPb** : Additional final state effects in PbPb that affect the excited states more than Y(1S)

Y(nS) cross sections

CMS-PAS-HIN-16-023

- Y(2S) is more suppressed than Y(1S)
 - Stronger suppression in more central collisions
 - Consistent with unity at peripheral 70–100 %
 - Hydrodynamic model (Krouppa, Strickland) describes data
- Y(3S) is strongly suppressed in all centralities

CMS-PAS-HIN-16-008

Nonprompt J/ ψ R_{pPb} vs. p_T

EPJC 77 (2017) 269

- RpPb ~ 1 in all y_{CM} bins analyzed
- Possible enhancement at backward and low p_T (\lesssim 7.5 GeV/c)

Nonprompt J/ ψ R_{pPb} vs. p_T

- Lower p_T : possible decrease of R_{pPb} at forward
- Higher p_T : R_{pPb} is consistent with unity

Nonprompt J/ ψ R_{pPb} vs. p_T

EPJC 77 (2017) 269

• R_{FB} seems to increase slightly with p_T in all y_{CM} bins

Nonprompt J/ ψ R_{pPb}: CMS vs. ATLAS

EPJC 77 (2017) 269

- CMS results are integrated over $|y_{CM}| < 1.5$
- ATLAS using interpolated pp reference
- Two results are in agreement

Nonprompt J/ ψ vs. B mesons

EPJC 77 (2017) 269

- Nonprompt J/ ψ results are integrated over $|y_{CM}| < 1.93$
- B meson using FONLL calculation as a reference
- Two results are in agreement

Nonprompt J/ ψ R_{AA} vs. centrality, p_T, lyl

EJPC 77 (2017) 252

- Stronger suppression in more central collisions
- No significant rapidity or p_T dependence