

New results on heavy flavor in heavy ion collisions with LHCb

Jiajia Qin(UCAS)

On behalf of the LHCb collaboration

The fifth Annual Large Hadron Collider Physics conference Shanghai, May 15-20, 2017

Introduction

- LHCb detector
- > Prompt D^0 production in *p*Pb and Pb*p* collisions @5TeV
- > J/ψ production in *p*Pb and Pb*p* collisions @8.16TeV

Summary

Introduction

- LHCb is a heavy-flavor precision experiment both on pp collision and heavy-ion collision studies.
- Several collision modes exist: *pp*, *p*Pb, PbPb...
- Probe partons with low/high momentum fraction(Bjorken x).
- Heavy flavor measurements are important to probe Quark-Gluon Plasma(QGP) properties.
- Cold Nuclear Matter(CNM) effects could be accessed by pPb collision.
 - nuclear PDFs
 - Color Glass Condensate(CGC)
 - Coherent energy loss

LHCb detector

LHCb, Int. J. Mod. Phys. A30 (2015) 1530022

Backward: Pb-p

 y^* : rapidity defined in nucleon-nucleon rest frame.

Fwd: 1.5<*y**<4.0 $y^* = y_{lab} - 0.465$

Bwd:

-5.0<
$$y^*$$
<-2.5
 y^* = -(y_{lab} + 0.465)

Properties : ECAL HCAL SPD/PS Second vertex resolution : RICH2 M $\sigma_{x,y} \sim 15 \ \mu m, \ \sigma_z \sim 80 \ \mu m$ $\Delta p/p$: 0.5% at 5 GeV/c to 1% at 1 GeV/c K Identification : ~90%, mis-ID <5% ($p \in [2, 100]$ GeV/c) μ Identification : ~97%, mis-ID <1% at high $p_{\rm T}$ Rapidity always defined w.r.t. proton direction.

Pb

Prompt D^0 production in pPb and Pbp @5TeV

Signal extraction from fitting Mass- χ^2_{IP}

Page 6

Double differential cross-section($p_{\rm T}$, y^* **)**

LHCb-PAPER-2017-015

The integrated cross-sections:

 $\sigma_{\text{forward}}(p_T < 10 \text{ GeV}/c, 1.5 < |y^*| < 4.0) = 230.6 \pm 0.5 \pm 13.0 \text{ mb},$ $\sigma_{\text{forward}}(p_T < 10 \text{ GeV}/c, 2.5 < |y^*| < 4.0) = 119.1 \pm 0.3 \pm 5.6 \text{ mb},$

Preliminary

 $\sigma_{\text{backward}}(p_T < 10 \text{ GeV}/c, 2.5 < |y^*| < 5.0) = 252.7 \pm 1.0 \pm 20.0 \text{ mb,}$ $\sigma_{\text{forward}}(p_T < 10 \text{ GeV}/c, 2.5 < |y^*| < 4.0) = 175.5 \pm 0.6 \pm 14.4 \text{ mb.}$

Single differential cross sections

LHCb-PAPER-2017-015

In general good agreement with EPS09 LO, EPS09 NLO, while nCTEQ15 underestimates data at low $p_{\rm T}$.

[EPJC 77 (2017), Comput. Phys. Commun. 198 (2016), Comput. Phys. Commun -184 (2013)]

Page 8

$p_{\rm T}$ -differential nuclear modification factors

> R_{pPb} slightly increases with p_{T} in both Fwd and Bwd.

Calculations based on nPDFs or CGC are in good agreement with data. LHCb-PAPER-2017-015 Phys. Rev. D91 (2015), no. 11 114005

Reference D^0 cross-section taken from LHCb-PAPER-2016-042*

y*-differential nuclear modification factors

LHCb-PAPER-2017-015

- Strong suppression in Fwd region, small excess in Bwd region.
- > R_{pPb} decrease with increasing of rapidity.
- Calculations based on nPDFs or CGC are in good agreement with data.

Forward-Backward production ratio

LHCb-PAPER-2017-015

Page 12

J/ψ production in *p*Pb and Pbp @8.16TeV

Page 13

Signal extraction from fitting Mass- t_z

Two dimensional fit to mass and pseudo proper decay time on 2016 data(pPb ~14 nb⁻¹ and Pbp ~21 nb⁻¹):

LHCb-PAPER-2017-014

LHCD 5/18/2017

Double differential cross-section($p_{\rm T}$, y^*)

Prompt I/ψ production cross sections:

Non-prompt J/ψ production cross sections:

LHCD 5/18/2017

 $\frac{10^{6}}{10^{5}} \frac{10^{6}}{10^{7}} \frac{10^{7}}{10^{4}} \frac{10^{7}}{10^{3}}$

 10^{2}

10¹

 10^{0}

Preliminary

 $-3.0 < v^* < -2.5$ $-3.5 < y^* < -3.0$

 $-4.0 < y^* < -3.5$

 $-4.5 < y^* < -4.0$

 $-5.0 < y^* < -4.5$

5

106

LHCb-PAPER-2017-014

LHCb

prompt J/ψ , Pbp

10

 $p_{\rm T}[{\rm GeV}/c]$

 $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$

Fraction of J/ψ **from b decays**

 $F_B = \frac{\sigma_{nonprompt J/\psi}}{\sigma_{prompt J/\psi} + \sigma_{nonprompt J/\psi}}$

Comparing pp(8TeV), pPb and Pbp:

- Similar trends
- Deviations at low $p_{\rm T}$ highlight the differences in the nuclear effects on prompt and non-prompt.

JHEP 06 (2013) 064 LHCb-PAPER-2017-014

Single differential cross sections for prompt J/ψ

LHCD 5/18/2017

Single differential cross sections for non-prompt J/ψ

> As a function of $p_{\rm T}$: 10^{6} 10^{6} $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}} \left[\mathrm{nb}/(\mathrm{GeV}/c) \right]$ $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}} \left[\mathrm{nb}/(\mathrm{GeV}/c)\right]$ LHCb LHCb J/ψ -from-*b*-hadrons, *p*Pb J/ψ -from-*b*-hadrons, Pbp $1.5 < y^* < 4.0$ 10^{5} 10^{5} $-5.0 < y^* < -2.5$ $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$ $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$ 10^{4} 10^{4} 10^{3} Preliminary Preliminary 10^{3} Pbp *p*Pb *pp* rescaled pp rescaled 10^{2} 10^{2} 5 10 5 10 0 $p_{\rm T}[{\rm GeV}/c]$ $p_{\rm T}[{\rm GeV}/c]$ 0.25 Comparison with the \succ As a function of y: pPb, Pbp LHCb pp rescaled $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$ inter/extrapolated pp reference Preliminary cross section re-scaled by A=208. Differences highlight the effect of the nuclear. $0 < p_{\rm T} < 14 \,{\rm GeV}/c$ LHCb-CONF-2013-013 0.00 -5 0 5 LHCb-PAPER-2017-014 v^*

LHCb 5/18/2017

Nuclear modification factors for prompt J/ψ

LHCb-PAPER-2017-014 Phys. Rev. D93 (2016) 085037

LHCD 5/18/2017

 v^*

Nuclear modification factors for non-prompt J/ψ

LHCD 5/18/2017

Forward to backward ratio- $p_{\rm T}$

- Advantage: no pp cross section needed. Many uncertainties cancel.
- Agreement with 5TeV data within uncertainties.

Forward to backward ratio-*y*^{*}

LHCb-PAPER-2017-014

- Advantage: no pp cross section needed. Many uncertainties cancel.
- Agreement with predictions and 5TeV data within uncertainties.

Summary

- > LHCb has collected large heavy ion collision data in pPb and Pbp.
- ➤ Measurements of prompt D^0 production in *p*Pb and Pb*p* collisions at $\sqrt{s_{NN}} = 5$ TeV show strong cold nuclear matter effects that are reproduced by calculations using nPDFs, CGC framework.
- > Prompt and non-prompt J/ψ production in *p*Pb and Pb*p* collisions at $\sqrt{s_{NN}} = 8.16$ TeV help constraining models for nuclear effects.
- ➢ More results by LHCb under way...

Thanks for your attention!

Page 23

BackUp

Fit functions in prompt D^0 production

➤ D⁰ Mass: CB+Gaussian

 $\succ \log_{10}(\chi^2_{IP}(D^0))$:

$$f(x;\mu,\sigma,\epsilon,\rho_{\rm L},\rho_{\rm R}) = \begin{cases} e^{\frac{\rho_{\rm L}^2}{2} + \rho_{\rm L} \frac{x-\mu}{(1-\epsilon)\sigma}} & x < \mu - (\rho_{\rm L}\sigma(1-\epsilon)), \\ e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma(1-\epsilon)}\right)^2} & \mu - (\rho_{\rm L}\sigma(1-\epsilon)) \le x < \mu, \\ e^{-\left(\frac{x-\mu}{\sqrt{2}\sigma(1+\epsilon)}\right)^2} & \mu \le x < \mu + (\rho_{\rm R}\sigma(1+\epsilon)), \\ e^{\frac{\rho_{\rm R}^2}{2} - \rho_{\rm R} \frac{x-\mu}{(1+\epsilon)\sigma}} & x \ge \mu + (\rho_{\rm R}\sigma(1+\epsilon)), \end{cases}$$

Fit functions in J/ψ production

➤ Mass:

- Signal: CB
- Background: exponential

$\succ t_z$:

- Signal:
 - Prompt: delta function
 - Non-prompt: single exponential
 - Resolution: sum of three Gaussian
- Background: an empirical function derived from the upper mass sideband.

$$f_{\text{background}} = (1 - f_1 - f_2 - f_3 - f_4)\delta(t_z) + \\ \theta(t_z) \left(f_1 \frac{e^{-t_z/\tau_1}}{\tau_1} + f_2 \frac{e^{-t_2/\tau_2}}{\tau_2} \right) + \\ \theta(-t_z) \left(f_3 \frac{e^{t_z/\tau_3}}{\tau_3} \right) + f_4 \frac{e^{-|t_z|/\tau_4}}{2\tau_4},$$

Total efficiency for J/ψ production in *p*Pb and Pbp @8.16TeV

