

LHCP 2017 - 15-20 May, Shanghai Searches for new physics in lepton plus jet final states in ATLAS and CMS

Francesco Romeo

On behalf of the ATLAS and CMS collaborations

Lepton plus jet searches in ATLAS and CMS

Lepton plus jet signature is expected in many scenarios beyond the SM. Some examples are:

- Leptoquarks, heavy neutrinos, microscopic black holes (discussed in this talk)
- Diboson searches
 - \rightarrow Talks by Ljiljana Morvaj and Huang Huang
- Vector-like quarks, heavy top-quark partner $(X_{5/3})$
 - \rightarrow Talks by Andrew Ivanov, Huaqiao Zhang, Sophio Pataraia
- SUSY 3rd generation
 - \rightarrow Talks by Loukas Gouskos and Caroline Collard
- SUSY RPV:
 - ightarrow Talk by Xuai Zhuang

Introduction

Leptoquark model

- Leptoquarks are bosons that carry both lepton and baryon numbers and are predicted in many theories beyond the SM
- Exact properties (spin, weak isospin, electric charge) depend on specific model
 → direct LQ searches at the LHC in the context of an effective model:
 Buchmüller-Rückl-Wyler model (BRW). Three generations: LQ1, LQ2, LQ3
- σ depends only on LQ masses (for scalar LQ, discussed here) BR($LQ \rightarrow \ell q$) = β ; BR($LQ \rightarrow \nu q$) = 1- β

LQLQ	β^2	$\beta(1-\beta)$	$(1-eta)^2$
1st gen	ee + jj	$e\nu + jj$	n/a
2nd gen	$\mu\mu + jj$	$\mu\nu + jj$	n/a
3rd gen	au au+bb,tt	n/a	u u + bb,tt

 β generally unknown, but $\{\ell\ell, \ell\nu, \nu\nu\} + qq$ maximally produced for $\beta = 1$, 0.5, and 0 (as required in the BRW model and assumed in the results of this talk)

Introduction

(Some) models with heavy Majorana neutrino

- **Left-right**: $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)$
 - provides explanation of parity violation in weak interactions
 - SU(2)_R → 3 additional gauge bosons: W[±]_R and Z' → heavy right-handed neutrino states N_ℓ (ℓ = e, μ, τ)
 - σ ruled by $m(W_R)$ and $N_\ell/m(W_R)$ relationship

Seesaw: introduces new heavy states

- neutrino masses given by $m_{
 u} \sim y_{
 u}^2 v^2/m_N$
- Type I implemented through fermion singlet (3 right-handed neutrino states, Nℓ)
- σ depends on $V_{\ell N}, m_N$

Compositeness: quarks and leptons have internal substructure

(at the compositeness scale, Λ)

- SM fermions thought as bound states of more fundamental constituents
- ullet ightarrow excited fermions, among which N_ℓ
- σ function of $\Lambda, \mathbf{m}_{N_{\ell}}$

LQ1/LQ2

LQ1 and LQ2 in $\ell \ell j j$ channels with ATLAS and CMS (13 TeV; 3 fb^{-1})

ATLAS LQ1 - LQ2: New J. Phys. 18 (2016) CMS LQ1: EXO-16-007 CMS LQ2: EXO-16-043

- ℓ : pT>50 (CMS), 30 (ATLAS) GeV, $|\eta|<$ 2.5
- $\bullet \geq$ 2 jets: pT>50 GeV, $|\eta|$ <2.5
- *M*_{ℓℓ} >50 (CMS), 130 (ATLAS)
- *S*_T > 300 (CMS), 600 (ATLAS)

 $M_{\ell\ell}$, S_T cuts optimized for each signal mass point in CMS including $M_{min}(\ell, jet)$, used for signal extraction in ATLAS

Z+Jets

tī

from MC, normalized to data around ATLAS, CMS LQ1: from MC corrected by SF in $e\mu$ CR the Z-peak CMS LQ2: from data $e\mu$ events correcting by different BR and object efficiencies

LQ1/LQ2

Results for LQ1 and LQ2 with ATLAS and CMS

LQ1/LQ2

Limits for LQ1 and LQ2 with ATLAS and CMS

LQ3/Left-right N

Searches with 2 taus and 2 jets in CMS (13 TeV; 3 - 13 fb^{-1})

JHEP 03 (2017) EXO-16-023

Consider $\tau_h(\tau_h, e, \mu)$ jj channel

- au_h : pT>60 GeV, $|\eta|$ <2.1
- e, μ : pT>50 GeV, $|\eta| < 2.1$
- j: pT>50 GeV, |η| <2.4
- $M(\tau_h, ((\tau_h), (e, \mu))) > (100), (150) \text{ GeV}$

• $t\bar{t}$ From simulation, after validation in dilepton plus b-jet region

 \bullet Z,W+jets From simulation, after normalization to data in control regions

LQ3/Left-right N

Limits for LQ3 and LR heavy neutrinos in CMS

 $\tau_{\rm h}\ell bb \ [\beta^2; \beta = 1] < 850 \ {\rm GeV} \ {\rm at} \ 95\% \ {\rm CL}$

Left-right N

Left-right W_R and heavy neutrino search with 2 leptons and 2 jets in CMS (13 TeV, 2.6 fb^{-1})

- Consider ee, $\mu\mu$ +jj channels EXO-16-045
- ℓ, ℓ : pT>60,53 GeV and $|\eta| < 2.4$
- $\bullet \geq$ 2 jets:pT>40 GeV and $|\eta| <$ 2.4
- $M_{\ell,\ell} > 200 \text{ GeV}, M_{\ell\ell jj} > 600 \text{ GeV}$

• $t\bar{t}$ from e μ data scaled to the 2lep same-flavor region • Drell-Yan from simulation after data/MC correction taken from Z-peak

Observation in agreement with SM expectation

Heavy composite Majorana neutrino with 2 leptons and 2 quarks in CMS (13 TeV, 2 fb^{-1})

EXO-16-026

- Consider ee+qq, $\mu\mu$ +qq channels
- $\ell\ell$: pT>110,35(50,30) GeV
- for ee($\mu\mu$), $|\eta| < 2.4$
- \geq 1 large-radius jet: pT>190 GeV, $|\eta| < 2.4$ (for *N* decays with gauge/contact interaction)

Bkg estimation done consistently among channels

- + $t\bar{t}$ from $\mathrm{e}\mu$ data scaled to the 2lep same-flavor region
- Drell-Yan from simulation after data/MC correction taken from Z-peak

Type I Seesaw (SS) N and left-right and in ATLAS and CMS (8 TeV, 20 fb^{-1})

Phys. Lett. B 748 (2015) JHEP 04 (2016) JHEP07(2015)

CMS

ATLAS

Signal selection							
<i>ee</i> , μμ, • same • 3rd ℓ	$e\mu + jj$ channels e-sign lepton selection k veto. Z-peak veto.	on no b-iet. $E_{\pm}^{miss} < 30$	ee, $\mu\mu$ + jets channels • same-sign lepton selection • 3rd ℓ yeto Z-peak yeto $E^{miss}_{-} < 40$ GeV				
Model	Type I SS (m_N < 80)	Type I SS ($m_N > 80$)	Type I SS	Left-right N			
# jet	≥ 2	≥ 2	≥ 2	≥ 1			
m _{ℓℓjj}	<200 GeV	>80 GeV	-	>400 (200)			
m _{ij}	< 120 GeV	[50, 110] GeV	[50, 110] GeV	>110 GeV			

Background estimation

Irreducible

- Diboson processes
- Taken from simulation (Validated in 3/4 lep region)

ℓ MisIdentification

- Weight data events selected with loose ID by $P(pT, \eta, \ell)$
- $P(pT,\eta,\ell)$ measured from data in multijet and Z+jets events

Charge flip

• Charge mismeasurement from simulation (corrected with $Z \rightarrow ee$ data)

Left-right/Typel N

Results for type I Seesaw (SS) N and left-right and in ATLAS and CMS

Left-right/Typel N

Limits for type I Seesaw (SS) N and left-right and in ATLAS and CMS

francesco.romeo@cern.ch (IHEP Beijing)

14 / 16

TeV-Gravity

TeV-scale gravity signature in ATLAS (13 TeV, 3 fb^{-1})

Fundamental scale of gravity (M_D) lowered up to TeV scale in some extra dimentions models (ADD, RS) \rightarrow microscopic black holes

Investigate $\ell j j$ ($\ell \ell \ell$) channels

- $pT{>}100 \text{ GeV}$
- $\sum pT > 3 \text{ TeV}$

Main bkg taken from simulation normalized to data in 750 $<\sum$ pT < 1500 GeV

- Z+jets: evt around the Z-peak
- W+jets: 1 ℓ , $E_T^{miss} > 40$ GeV, no b-jet
- $t\overline{t}$: 1 ℓ , # jet \geq 4 GeV, 2 b-jet

Summary

Summary

- ATLAS and CMS have a wide program for search with lepton plus jet final states
 we focused on leptoquark, heavy neutrino searches, and microscopic black holes
- Leptoquark are investigated within the BRW model with searches in all the 3 generations at 13 TeV

	LQ1	LQ2	LQ3
ATLAS	<1100 GeV ($ee + jj$)	$<$ 1050 GeV ($\mu\mu+jj$)	$<$ 640 GeV ($t\overline{t}+E_T^{miss}$, 8 TeV)
CMS	<1130 GeV (<i>ee</i> + <i>jj</i>)	$<$ 1165 GeV ($\mu\mu+jj$)	$<$ 740 GeV ($ au_h au_h+bb$)
			$<$ 850 GeV ($ au_h\ell+bb$)

 Heavy neutrinos investigated with different models with searches in all the 3 generations at 13 TeV and 8 TeV

	Left-right	Type I seesaw	Composite
ATLAS	50 GeV to 2000 GeV	$ V_{eN} ^2 < 0.029$	n/a
	m_{W_R} > 400 GeV	$ V_{\mu N} ^2 < 0.0028$	
		for $m_N = 110 \text{ GeV}$	
CMS	200 GeV to 2150 GeV	$ V_{eN} ^2 < 0.00015-0.71$	4.35 eeqq TeV
	m_{W_R} > 600 GeV	$ V_{\mu N} ^2 < 2.1 \times 10^{-5}$ -0.583	4.50 μμqq TeV
		$ V_{eN}V_{\mu N}^{*}/(V_{eN} ^{2}+ V_{\mu N} ^{2}) < 6.6 \times 10^{-5}$ -0.47	for $\Lambda=5~\text{TeV}$
		for <i>m_N</i> in [40-500] GeV	

- Production of microscopic black holes excluded in models with two to six extra space dimensions in the (M_D, M_{th}) plane
- In all searches good agreement between observation and SM expectaion \rightarrow mild deviation observed in searches for LQ1 and heavy neutrinos in the *ee* + *jj* channel in CMS at 8 TeV not confirmed