NEUTRINOS AND AXION-LIKE PARTICLES

Adam Smetana

Institute of Experimental and Applied Physics, Czech Technical University in Prague

STANDARD MODEL

 $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm QCD+EWD} + \mathcal{L}_{\rm H}$

 $\mathrm{SU}(3)_c \times \mathrm{SU}(2)_L \times \mathrm{U}(1)_Y \longrightarrow \mathrm{SU}(3)_c \times \mathrm{U}(1)_{\mathrm{em}}$

- SM has achieved tremendous success in reproducing accelerator phenomena
- $_{
 m o}~$ discovering the origin and structure of ${\cal L}_{
 m H}$ is only at its begining
- SM has failed facing the evidence of dark matter

electroweak scale

• Higgs potential

$$\mathcal{V}_H = \lambda (H^{\dagger}H - v/2)^2$$

unnaturally small

 $v \doteq 246 \,\mathrm{GeV} \approx 10^{-16} M_{\mathrm{Planck}} \quad M_{W,Z,h}(m_t) \propto v$

STANDARD MODEL

neutrino masses (oscillations)
 QCD theta parameter

Dirac neutrinos 0

$$\nu = \nu_L + \nu_R$$

• CP violation in QCD

$$\mathcal{L}_{\theta} = \bar{\theta} \tilde{G}_{c}^{\mu\nu} G_{c\mu\nu}$$

weighing

NEUTRINOS

ATLAS-CZ-SK 2016, Žilina

NEUTRINO OSCILLATIONS

- o flavor basis tells us how do neutrinos interact
- mass basis tells us how do neutrinos propagate

$$\mathcal{L}_{w+m} = \frac{g}{\sqrt{2}} (\bar{e}_{Li} \gamma^{\mu} \nu_{Li}) W_{\mu}^{-} + \bar{e}_{i} M_{ij}^{(e)} e_{j} + \frac{1}{2} \bar{\nu}_{Li} M_{ij}^{(\nu)} \nu_{Lj}{}^{c} + \dots + \text{h.c.}$$

$$= \frac{g}{\sqrt{2}} (\bar{e}_{i}^{m} \gamma^{\mu} U_{ij} \nu_{j}^{m}) W_{\mu}^{-} + \bar{e}_{i}^{m} m_{i}^{(e)} e_{i}^{m} + \frac{1}{2} \bar{\nu}_{i}^{m} m_{i}^{(\nu)} (\nu_{i}^{m})^{c} + \dots + \text{h.c.}$$

$$U_{PMNS} \text{ lepton mixing matrix}$$

$$\begin{split} U_{PMNS} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{13}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - s_{12}s_{23}e^{i\delta_{13}} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{21}} & 0 \\ 0 & 0 & e^{i\lambda_{31}} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{31}} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_{31}} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{23}c_{13} \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{12}c_{23}c_{13}c_{13} & s_{13}c_$$

ATLAS-CZ-SK 2016, Žilina

UTRINO OSCILLATIONS

$$|\Delta m_A^2| = (2.5 \pm 0.3) \times 10^{-3} \text{eV}^2$$

 $\Delta m_{\odot}^2 = (8.0 \pm 0.3) \times 10^{-5} \text{eV}^2$

	(0.8 0.5 0.2)		(1)	0.2	0.001
$U_{\rm PMNS}$ ~	$0.4\ 0.6\ 0.7$	$V_{CKM} \sim$	0.2	1	0.01
	$(0.4\ 0.6\ 0.7)$		0.001	0.01	1)

matter effects: \bigcirc

 m^2

atmospheric ~2×10⁻³eV²

solar~7×10-5eV2

 m_3^2 .

 m_2^2 .

 m_1^2

0

ATLAS-CZ-SK 2016, Žilina

 m^2

m22

 $-m_1^2$

-m32

- 0

downward going

travel length ~20km

solar~7×10-5eV2

atmospheric ~2×10⁻³eV²

 ν_{μ}

DIRAC NEUTRINOS

 $\mathcal{L}_{\nu} = -y_{\nu}\bar{\ell}_L H\nu_R + \text{h.c.}$ $\supset -y_{\nu}\bar{\nu}_L H^0 \nu_R + \text{h.c.}$ \mathbf{I}^{H^0} ${\bf A} \langle H^0 \rangle = \frac{1}{\sqrt{2}}$ $H^0 \longrightarrow \frac{1}{\sqrt{2}}(v+h)$ ν_L ν_R 1.100 8.10 -1 $\begin{aligned} \mathcal{L}_{\nu} &\supset & -\frac{y_{\nu}}{\sqrt{2}}(v+h)\bar{\nu}_{L}\nu_{R} + \text{h.c.} \\ &\supset & -m_{\nu}\bar{\nu}_{L}\nu_{R} + \text{h.c.} = & -\bar{\nu}m_{\nu}\nu \end{aligned}$ **KATRIN** ity (count rate, arbitrary units) 6·10⁻¹ 4.10-8 3·10⁻⁸ 4.10 -1 2.10-8 $m_{\nu} < 10^{-11} v$ $\Delta E = 1.0 \text{ eV}$ 1.10-8 2·10⁻¹ Upper limits of cca 0.2 eV comes from various 0.100 18.598 18.599 18.600 (non)observations (beta-decay-spectrum endpoint, Onbb, cosmology). 0.100 4 10 12 14 18 o 2 6 з 16 Energy [keV]

ATLAS-CZ-SK 2016, Žilina

It is natural to complete the lepton right-handed doublet.

 $H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}, \quad \ell_L = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, \quad \nu_R \\ e_R$

2.6.2016

 $\nu = \nu_L + \nu_B$

SEESAW MECHANISM

• New physics beyond Standard Model enters effective lagrangian by operators of dim>4 suppressed by its energy scale. $H^0_{\Sigma} \longrightarrow H^0$

$$\mathcal{L}_{\rm SM}^{\rm (eff)} = \mathcal{L}_{\rm SM} - \frac{G_{\nu}}{\Lambda} (\bar{\ell}_L^c \tilde{H}^*) (\tilde{H}^{\dagger} \ell_L) + \text{h.c.} + \mathcal{O}(\Lambda^{-2}) \qquad \nu_L \checkmark \checkmark \nu_L$$

- The Weinberg operator is the only one of dim=5 allowed by gauge symmetries in SM.
- It violates the lepton number.
- It generates neutrino masses suppressed by the ratio v/Λ .

$$\mathcal{L}_{\nu} = -\frac{G_{\nu}}{\Lambda} (\bar{\nu}_{L}^{c} \frac{v}{\sqrt{2}}) (\frac{v}{\sqrt{2}} \nu_{L}) + \text{h.c.} = -\frac{1}{2} m_{\nu} \bar{\nu}^{c} \nu + \text{h.c.} \qquad \begin{array}{c} \langle H^{0} \rangle & \langle H^{0} \rangle \\ \mathbf{x} & \mathbf{x} \\ \nu_{L} \\ \nu_$$

• Seesaw mechanism provides Majorana neutrinos which can be made light naturally by large enough Λ .

(--- 0)

· -- 0.

NEUTRINOLESS DOUBLE BETA DECAY

 Majorana nature of neutrinos and lepton number violation allows rare neutrinoless double beta decay (0nbb,ECEC).

kinematically allowed only for few nuclei

- ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹⁵⁰Nd, ²³⁸U
- 2nbb: $T_{1/2} \approx (10^{18} 10^{24}) \,\mathrm{y}$
- Onbb: $T_{1/2} > 10^{26} \,\mathrm{y}$

ATLAS-CZ-SK 2016, Žilina

NEUTRINOLESS DOUBLE BETA DECAY

$$\left(T_{1/2}^{0\nu}\right)^{-1} = \left|\frac{m_{\beta\beta}}{m_e}\right|^2 g_A^4 \left|M_{\nu}^{0\nu}\right|^2 G^{0\nu}$$

$$m_{\beta\beta}| = |c_{12}^2 c_{13}^2 e^{i\alpha_1} m_1 + s_{12}^2 c_{13}^2 e^{i\alpha_2} m_2 + s_{13}^2 m_3|$$

NEUTRINOLESS DOUBLE BETA DECAY

 The predicted values of half-lifes have big uncertainties mainly from nuclear matrix elements.

searching for

ATLAS-CZ-SK 2016, Žilina

2.6.2016

ANOMALOUS GLOBAL SYMMETRIES

• QCD in the chiral limit $m_q \to 0$

$$\mathcal{L}_{\text{QCD}} = \bar{q} \mathbf{i} \not{D} q - \frac{1}{4} G_a^{\mu\nu} G_{a\mu\nu} \qquad \qquad q = q_L + q_R = \begin{pmatrix} u \\ d \\ \vdots \end{pmatrix} \right\} n_f$$

←

global symmetries

$$G_{\text{class.}} = \mathrm{U}(n_f)_L \times \mathrm{U}(n_f)_R$$

 $q' = \mathrm{e}^{\mathrm{i} \varepsilon_a^L T_a} q_L + \mathrm{e}^{\mathrm{i} \varepsilon_a^R T_a} q_R$

axial symmetry is anomalous

$$G_{ ext{class.}}/G_{ ext{quant.}} = \mathop{\mathrm{U}}(1)_A \ _{q' \,=\, \mathrm{e}^{\mathrm{i}arepsilon^A \gamma_5} q}$$

$$G_{\text{quant.}} = \mathrm{SU}(n_f)_L \times \mathrm{SU}(n_f)_R \times \mathrm{U}(1)_B$$

$$q' = \mathrm{e}^{\mathrm{i}\varepsilon/3}q$$

$$\partial_\mu J^\mu = 0$$

$$\partial_\mu J^\mu_A = \frac{\alpha_3}{4\pi} G^{\mu\nu}_a \tilde{G}_{a\mu\nu} + 2m\bar{q}\mathrm{i}\gamma_5 q$$

• global symmetries are spontaneously broken by chiral codensate $\langle 0 | \bar{q}q | 0 \rangle = \langle 0 | \bar{q}_R q_L + \text{h.c.} | 0 \rangle \rightarrow \langle 0 | \bar{q}_R e^{-i\varepsilon_a^R T_a} e^{i\varepsilon_a^L T_a} q_L + \text{h.c.} | 0 \rangle$ $G_{\text{quant.}} \rightarrow \text{SU}(n_f)_V \times \text{U}(1)_B \qquad \varepsilon_a^V = \varepsilon_a^R = \varepsilon_a^R$ $n_f = 2: \quad \pi^+, \pi^0, \pi^-, \quad m_\pi = 0$ $\eta^0, \quad m_\eta \neq 0$

2.6.2016

JUM OF GAUGE THEORY

usually vacuum is empty of fields

$$\psi = 0$$

gauge fields have however redundant degrees of freedom, \bigcirc which can make nontrivial vacuum field configuration

$$A_n = \frac{\mathrm{i}}{g} \Omega_n \nabla \Omega_n^{-1}$$

gauge transformation of A = 0classes of vacuum configurations $\Omega_n \stackrel{r \to \infty}{\longrightarrow} e^{2\pi i n};$ (pure gauge fields)

$$\left|\theta\right\rangle = \sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i}n\theta} \left|n\right\rangle$$

gauge invariant vacuum

't Hooft - tunelling transition between two vacua

due to the growth of QCD strengthat large distances $A[\nu \neq 0] \sim A[\nu = 0]$ $_{+}\langle\theta|\theta\rangle_{-} = \sum_{\nu} \mathrm{e}^{\mathrm{i}\theta\nu} \Big(\sum_{n} _{+}\langle n+\nu|n\rangle_{-}\Big) = \int_{\mathrm{paths}} \delta A_{\mu} \mathrm{e}^{\mathrm{i}S_{\mathrm{eff}}[A]}$

 $|n\rangle$

what should be the action to incorporate such transitions?

$$\implies S_{\text{eff}} = S + \theta \int \mathrm{d}^4 x \, \frac{\alpha_3}{8\pi} G_a^{\mu\nu} \tilde{G}_{a\mu\nu} \implies$$

 $\nu = n_+ - n_- = \int \mathrm{d}^4 x \, \frac{\alpha_3}{8\pi} G_a^{\mu\nu} \tilde{G}_{a\mu\nu}$

$$\mathcal{L}_{\text{eff}} = \mathcal{L} + \theta \frac{\alpha_3}{8\pi} G_a^{\mu\nu} \tilde{G}_{a\mu\nu}$$

 \bigcirc

STRONG CP PROBLEM IN QCD

CP violation has two sources in QCD

$$\theta \frac{\alpha_3}{8\pi} G_a^{\mu\nu} \tilde{G}_{a\mu\nu} - \bar{q}_{Li} M_{ij} q_{Rj} + \text{h.c.}$$

vacuum structure

quark mass matrix

• quark mass matrix should be diagonalized by: $q_R \rightarrow U_R q_R$ part of which is axial symmetry $U(1)_A$ $q_L \rightarrow U_L q_L$ $\rightarrow m_d = U_L^{\dagger} M U_R$

• due to anomaly, proper axial transformation is not that with $\partial_{\mu}J^{\mu}_{A} = \frac{\alpha_{3}}{4\pi}G^{\mu\nu}_{a}\tilde{G}_{a\mu\nu} \stackrel{\text{def}}{=} \partial_{\mu}K^{\mu}$ but rather that with $\partial_{\mu}\tilde{J}^{\mu}_{A} \stackrel{\text{def}}{=} \partial_{\mu}(J^{\mu}_{A} + K^{\mu}) = 0$

which has time-independent eventhough gauge dependent charge $\, ilde{Q}_A$

the proper axial transformation changes vacuum

$$\mathrm{e}^{\mathrm{i}\alpha\tilde{Q}_{A}}\left|\theta\right\rangle=\left|\theta+\alpha\right\rangle$$

$$\begin{array}{c} \stackrel{\mathrm{e}^{\mathrm{i}\alpha\tilde{Q}_{A}}}{\longrightarrow} \quad \bar{\theta}\frac{\alpha_{3}}{8\pi}G_{a}^{\mu\nu}\tilde{G}_{a\mu\nu} - m\bar{q}q & \text{diagonal masses and } \bar{\theta}\stackrel{\mathrm{def}}{=} \theta + \alpha \\ \stackrel{\mathrm{e}^{\mathrm{i}\bar{\theta}\gamma_{5}/4}}{\longrightarrow} \quad 0 - m(\bar{q}q + \mathrm{i}\bar{\theta}\bar{q}\frac{\gamma_{5}}{2}q) & \text{electric dipole moment of neutron} \\ \bar{\theta} < 2 \times 10^{-10} \quad \longleftarrow \quad d_{n} \sim \frac{em}{M_{n}^{2}}\bar{\theta} \sim 5 \times 10^{-16} \,\mathrm{ecm} & \text{experiment: } d_{n}^{\mathrm{exp}} < 10^{-25} \,\mathrm{ecm} \\ \end{array}$$

ATLAS-CZ-SK 2016, Žilina

PECCEI-QUINN SOLUTION

• new symmetry $U(1)_{PQ}$ with the same anomaly $\partial_{\mu}J^{\mu}_{PQ} \propto G\tilde{G}$

- if Wigner-Weyl realization \longrightarrow at least one massless quark $e^{-i\bar{\theta}\tilde{Q}_{PQ}} |\theta\rangle = |0\rangle$
- but it **must** be broken in SM \longrightarrow Nambu-Goldstone realization

NG boson = Winberg-Wilczek axion (1978)

 $m_a \sim rac{\Lambda_{
m QCD}^2}{f}, ~~f~~{
m scale}~{
m of}~{
m symmetry}~{
m breaking}$

• effective lagrangian for the axion

• the axion has periodic potential which is minimized by

$$\theta_{\rm eff} = \bar{\theta} + \frac{\xi}{f} \langle a(x) \rangle = 0$$

ANOMALIES IN STANDARD MODEL

- all the gauge symmetry currents are anomaly free $\partial_{\mu}j^{\mu}_{c,L,Y} = 0$ nice consistency check
- Iepton and baryon number symmetries are anomalous!

$$\begin{aligned} \partial_{\mu} J_{\rm B}^{\mu} &= 3 \frac{g_1^2}{8\pi^2} Y_{\mu\nu} \tilde{Y}^{\mu\nu} - 3 \frac{g_2^2}{32\pi^2} W_{\mu\nu a} \tilde{W}_a^{\mu\nu} \\ \partial_{\mu} J_{\rm L}^{\mu} &= 3 \frac{g_1^2}{8\pi^2} Y_{\mu\nu} \tilde{Y}^{\mu\nu} - 3 \frac{g_2^2}{32\pi^2} W_{\mu\nu a} \tilde{W}_a^{\mu\nu} \end{aligned}$$

• but their combination...

 $\partial_{\mu}J^{\mu}_{\rm B-L} = 0$ \longrightarrow symmetry which might be gauged in SM (L-R models, GUT)

$$\partial_{\mu}J^{\mu}_{\rm B+L} \neq 0$$

symmetry which might be gauged in SM (L-R models, GUT) $\Delta(B+L) = 2N_g\nu \qquad \Delta(B+L)_{\min} = 6$ $\Delta(B+L) = 2 \text{ process } p^+ \rightarrow e^+\pi^0 \text{ is still forbidden in SM})$ $A[\nu]_{(B+L)\text{viol.}} \sim 10^{-80\nu}$ in the early Universe due to thermal effects $A[\nu]_{(B+L)\text{viol.}} \sim 1$

basis of baryogenesis via leptogenesis

INVISIBLE AXION AS DARK MATTER

- axion from singlet Higgs
 - KSVZ axion: singlet couples to new heavy quark only
 - DFSZ axion: singlet couples to Higgs doublet(s) only
 - LMN axion=majoron: singlet couples to neutrinos only
- cold dark matter does not need to consist of heavy particles >keV
- sub-eV particles work as well if
 - non-thermal (cold) production
 - non-fermionic particles

• axion window

- to avoid axion emission by stars that would heat them up and accelerate their evolution
- to avoid overclosing of the universe

 $f \in (10^9, 10^{12}) \text{GeV}$ $m_a \in (10^{-6}, 10^{-3}) \text{eV}$

consequences of

PHENOMENOLOGICAL EXTENSION OF STANDARD MODEL

ATLAS-CZ-SK 2016, Žilina

2.6.2016

LAGRANGIAN WITH OPERATORS UP TO DIM=5

Weinberg operator originates in a new physics

ATLAS-CZ-SK 2016, Žilina

2.6.2016

MAGNETIC MOMENT OF NEUTRINO

- for Majorana neutrinos
- $\begin{array}{c} \mathbf{x} \\ \mathbf{v}_L \\ \mathbf{v}_R \\ \mathbf{v}_R \\ \mathbf{v}_R \\ \mathbf{v}_R \\ \mathbf{v}_L \\ \mathbf{v}_R \\ \mathbf{v}_L \end{array}$
- $\mathcal{L}_{\mu} = \mu_{ij} \bar{\nu}_{Li} \sigma_{\mu\nu} \nu_{Lj}^c F^{\mu\nu}$ $\mu^{\mathrm{T}} = -\mu$

• the prediction (without exotics) is $\mu_{\nu} \sim 10^{-19} \mu_B$

- connection with neutrino mass
- distinguishing between Dirac and Majorana nature of neutrinos
- probe of new physics
- CMB radiation distortions
- changes in a color-magnitude diagram of globular clusters
- neutrino spin-flavor precession in magnetic field

directly, it can be observed in elastic scattering of neutrinos on electrons

 \odot

RESONANT ENHANCEMENT OF ONBB

Onbb decay is driven by exchange of virtual neutrino changing as \bigcirc

such neutrino-antineutrino conversion may be driven not only by Majorana mass but also by magnetic moment

Gozdz, Kaminski

field these two channels cancel due to

 $\mu_{e\alpha} = -\mu_{\alpha e}$

rotating magnetic field B, ω lifts the degeneracy in H and avoids the cancelation \bigcirc

$$H = \begin{pmatrix} H_{\nu} + \omega/2 & B\mu \\ -B\mu & H_{\nu} - \omega/2 \end{pmatrix} \quad \text{in the basis} \begin{pmatrix} \nu \\ \bar{\nu} \end{pmatrix}$$

it provides effective majorana mass which has resonant dependence on ω

LAGRANGIAN WITH OPERATORS UP TO DIM=5

• Peccei-Quinn solution of the strong CP problem has introduced axion

$$\mathcal{L}_{5} = \mathcal{L}_{SM} + \frac{1}{2}(\partial a)^{2} - \frac{1}{2}m_{a}^{2}a^{2} + \frac{g_{agg}}{f}aG_{a}^{\mu\nu}\tilde{G}_{a\mu\nu} + \frac{g_{a\gamma\gamma}}{f}aF^{\mu\nu}\tilde{F}_{\mu\nu} + \dots \quad \text{and other dim=5 operators}$$

PHOTON-AXION CONVERSION

• the axion-photon interaction $\frac{g_{a\gamma\gamma}}{f}a \mathbf{E} \cdot \mathbf{B}$

causes the axion-photon mixing in external magnetic field

 $\left(\omega^2 + \partial_z^2 + \left[\begin{array}{cc} Q_{\parallel} & B\omega/f \\ B\omega/f & -m_a^2 \end{array} \right] \right) \left[\begin{array}{c} A_{\parallel} \\ a \end{array} \right] = 0$

Maiani, Zavattini, Petronzio Kayser

- vacuum magnetic birefringence
- photon-axion conversion in magnetic fields (terrestrial, intergalactic)

conversion probability

$$P = \frac{1}{4} \frac{1}{\beta_a \sqrt{\epsilon}} (g_{a\gamma\gamma} B_0 L)^2 \left(\frac{2}{qL} \sin \frac{qL}{2}\right)^2$$

in analogy with neutrino oscillations

$$P = \sin^2 2\theta_{ij} \cdot \sin^2(\frac{\Delta m_{ij}^2 L}{4E})$$

SHINING LIGHT THROUGH WALL

AXION SEARCH STATUS

CONCLUSIONS

- we presented a humble review of a wast topics (neutrinos and axions)
- we tried to track some of common features of both
- we have selected several observational techniques requiring extreme magnetic field
- some of the most urgent problems of current particle physics may be solved without TeV scale new physics (neutrino properties, dark matter)
- suitable discovery tools are then low-intensity-frontier experiments and cosmology observations
- even non-observation of new particles at LHC is great piece of information

ATLAS-CZ-SK 2016, Žilina

MORE AXIONS

• imagine a Higgs doublet for every type of fermion H_d, H_u, H_e, H_{ν}

 $U(1)_{\rm B} \times U(1)_{\rm L} \times U(1)_{\rm B_5} \times U(1)_{\rm L_5} \xrightarrow{m_u, m_d, m_e, m_{\nu}^{\rm Majorana}} U(1)_{\rm B}$

- Weinberg-Wilczek axion

$$m_a \approx \frac{m_{\pi} f_{\pi}}{\Lambda_{\rm F}} \approx (10^{-3} - 10^{-7}) \,\mathrm{eV}$$

 $m_{a'} \approx M_W \left(\frac{8\pi^2}{g^2}\right)^2 \mathrm{e}^{-\frac{4\pi^2}{g^2}} \approx 10^{-36} M_W$

- Anselm-Uraltsev arion
- Chikashige-Mohapatra-Peccei majoron

$$m_J \stackrel{?}{=} 0$$