Introduction to Calorimeters

David Cockerill
Southampton Lecture
4 May 2016
Overview

- Introduction
- Electromagnetic Calorimetry
- Hadron Calorimetry
- Jets and Particle Flow
- Future directions in Calorimetry
- Summary
Introduction

Calorimetry

One of the most important and powerful detector techniques in experimental particle physics

Two main categories of Calorimeter:

- **Electromagnetic calorimeters** for the detection of e^\pm and neutral particles γ
- **Hadron calorimeters** for the detection of π^\pm, p^\pm, K^\pm and neutral particles n, K^0_L

μ^\pm usually traverse the calorimeters losing small amounts of energy by ionisation

The 13 particle types above completely dominate the particles from high energy collisions reaching and interacting with the calorimeters

All other particles decay ~instantly, or in flight, usually within a few hundred microns from the collision, into one or more of the particles above

Neutrinos, and neutralinos, χ^0, undetected but with **hermetic calorimetry** can be inferred from measurements of missing transverse energy in collider experiments
Calorimeters

Calorimeters designed to stop and fully contain their respective particles
‘End of the road’ for the incoming particle

Measure - **energy** of incoming particle(s) by total absorption in the calorimeter
- **spatial location** of the energy deposit
- (sometimes) **direction** of the incoming particle

Convert energy E of the incident particle into a detector response S

Detector response \(S \propto E \)
Calorimetry: basic mechanism

Energy lost by the formation of electromagnetic or hadronic cascades/showers in the material of the calorimeter

Many charged particles in the shower

The charged particles ionize or excite the calorimeter medium

The ionisation or excitation can give rise to:

- The emission of visible photons, O(eV), via scintillation
- The release of ionisation electrons, O(eV)

Photo-detectors or anodes/dynodes then detect these “quanta”
Introduction

Where you STOP is what you ARE !!!

- Magnetic field, 4T

A ‘wedge’ end on view of the CMS experiment at the LHC

Trackers

Get sign of charged particles from the Tracker

Tracker to be of minimum material to avoid losing particle energy before the calorimeters.

Key:
- Muon
- Electron
- Charged Hadron (e.g. Pion)
- Neutral Hadron (e.g. Neutron)
- Photon

2 metres

Em calorim
Had calorim

<table>
<thead>
<tr>
<th>e±</th>
<th>γ</th>
<th>p, π±, K±</th>
<th>n, K0</th>
<th>μ±</th>
</tr>
</thead>
</table>

Where you STOP is what you ARE !!!

Tracker

Electromagnetic Calorimeter

Hadron Calorimeter

Silicon Tracker

Transverse slice through CMS

Neutral

μ

Neutral

μ±
There are two general types of calorimeter design:

1) Sampling calorimeters

Layers of passive absorber (i.e. Pb or Cu) alternating with active detector layers such as plastic scintillator, liquid argon or silicon

→ Only part of the energy is sampled
→ Used for both electromagnetic and hadron calorimetry
→ Cost effective

ATLAS ECAL & HCAL
ALICE EMCAL
CMS HCAL
LHCb ECAL
2) Homogeneous calorimeters

Single medium, both absorber and detector
- Liquified Ar/Xe/Kr
- Organic liquid scintillators, large volumes, Kamland, Borexino, Daya Bay
- Dense crystal scintillators: PbWO$_4$, CsI(Tl), BGO and many others
- Lead loaded glass

Almost entirely for electromagnetic calorimetry
Electromagnetic Calorimetry
Electromagnetic Cascades

Electromagnetic cascades

- e^\pm bremsstrahlung and photon pair production
 By far the most important processes for energy loss by electrons/positrons/photons with energies above 1 GeV
 Leads to an e.m. cascade or shower of particles

- Bremsstrahlung
 Characterised by a ‘radiation length’, X_0, in the absorbing medium over which an electron loses, on average, 63.2% of its energy by bremsstrahlung.

\[
E = E_0 e^{-x/X_0}
\]

where

\[
- \frac{dE}{dx} = 4\alpha N_A \frac{Z^2}{A} r_e^2 E \ln \frac{183}{Z^{1/3}}
\]

\[
- \frac{dE}{dx} = \frac{E}{X_0}
\]

\[
X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}
\]

$X_0 \sim 180 \frac{A}{Z^2} \text{ [g cm}^{-2}\text{]}$

In Pb (Z=82) $X_0 \sim 5.6$ mm

Due to the $1/m_e^2$ dependence for bremsstrahlung, muons only emit significant bremsstrahlung above ~ 1 TeV ($m_\mu \sim 210 m_e$)

Use high Z materials for compact e.m. calorimetry
Pair production

Characteristic mean free path before pair production, \(\lambda_{\text{pair}} = 9/7 \ X_0 \)

Intensity of a photon beam entering calorimeter reduced to 1/e of the original intensity, \(I = I_0 \exp(-7/9 \ x/X_0) \). \(\lambda_{\text{pair}} = 7.2 \ \text{mm in Pb} \)

Brem and pair production dominate the processes that degrade the incoming particle energy

50 GeV electron
Loses 32 GeV over 1 \(X_0 \) by bremsstrahlung

50 GeV photon
Pair production to e+ e- , 25 GeV to each particle
Energy regime degraded by 25 GeV

Minimum ionising particle (m.i.p)
In Pb, over 1 \(X_0 \), ionization loss \(\sim O(10\text{s}) \) of MeV
Factor of \(\sim 1000 \) less than the above
Below a certain critical energy, E_c:

e^\pm energy losses are greater through ionisation than bremsstrahlung

The multiplication process runs out
- Slow decrease in number of particles in the shower
- Electrons/positrons are stopped

Photons progressively lose energy by Compton scattering, converting to electrons via the photo-electric effect, and absorption

$$E_c \approx \frac{610\text{MeV}}{Z + 1.24}$$

$\text{Pb (Z=82), } E_c = 7.3\text{ MeV}$

Liquids and solids
Introduction to Calorimeters 4 May 2016

EM Cascades: a simple model

Consider only Bremstrahlung and pair production
Assume: Incident energy = E_0, λ_{pair} and X_0 are equal
Assume: after each X_0, the number of particles
increases by factor 2

After ‘t’ layers, each of thickness X_0:
Number of particles = $N(t) = 2^t$
Average energy per particle = $E(t) = E_0 / 2^t$
Process continues until $E(t) < E_c$
This layer contains the maximum number of particles:

$$t_{\text{max}} = \frac{\ln E_0 / E_c}{\ln 2}$$
$$N_{\text{total}} = \sum_{t=0}^{t_{\text{max}}} 2^t = 2^{(t_{\text{max}}+1)} - 1 \approx 2 \cdot 2^{t_{\text{max}}} = 2 \frac{E_0}{E_c}$$

For a 50 GeV electron on Pb
$N_{\text{total}} \sim 14000$ particles
t_{max} at $\sim 13 X_0$ (an overestimate)
EM Cascade Profiles

EM shower development in Krypton (Z=36, A=84)

Photons created

Charged particles created

GEANT simulation: 100 GeV electron shower in the NA48 liquid Krypton calorimeter
Longitudinal Shower Development

Shower only grows logarithmically with E_0

Shower maximum, where most energy deposited,

\[t_{\text{max}} \sim \ln\left(\frac{E_0}{E_c}\right) - 0.5 \quad \text{for } e^\pm \]
\[t_{\text{max}} \sim \ln\left(\frac{E_0}{E_c}\right) + 0.5 \quad \text{for } \gamma \]

\[t_{\text{max}} \sim 5 X_0 = 4.6 \text{ cm for } 10 \text{ GeV electrons in PbWO}_4 \]

How many X_0 to adequately contain an em shower within a crystal?

Rule of thumb: RMS spread in shower leakage at the back

\[\sim 0.5 \times \text{average leakage at the back} \]

CMS requires the rms spread on energy measurement to be $< 0.3\%$

Therefore require leakage $< 0.65\%$

Therefore crystals must be $25 X_0 = 23 \text{ cm long}$
Transverse Shower Development

Mainly multiple Coulomb scattering by e^\pm in shower

- 95% of shower cone located in cylinder of radius $2R_M$ where $R_M =$ Moliere Radius

$$R_M = \frac{21 \text{ MeV}}{E_c} X_0 \quad [\text{g/cm}^2]$$

$R_M = 2.19$ cm in PbWO$_4$

using $X_0 = 0.89$ cm and $E_c \sim 8.5$ MeV

How many R_M to adequately measure an em shower?

Lateral leakage degrades the energy resolution

In CMS, keep contribution to $< 2%/\sqrt{E}$

Achieved by summing energy over 3x3 (or 5x5) arrays of PbWO$_4$ crystals
Detectors for Electromagnetic Calorimetry
PbWO$_4$ crystals: CMS and ALICE

Vital properties for use at LHC:
- **Compact and radiation tolerant**
- Density: 8 g/cc
- X_0: 0.89 cm
- R_M: 2.2 cm
- Sum over 3x3 or 5x5 crystals

Fast scintillation
- Emission: ~80% in 25 ns
- Wavelength: 425 nm
- Output: 150 photons / MeV (low, only 1% wrt NaI)

Homogeneous calorimeters

CMS Barrel crystal, tapered ~2.6x2.6 cm2 at rear Avalanche Photo Diode readout, gain = 50

CMS Endcap crystal, tapered, 3x3 cm2 at rear Vacuum Photo Triode readout, gain ~ 8

Emission spectrum (blue) and transmission curve
Homogeneous calorimeters

A CMS PbWO$_4$ crystal ‘boule’ emerging from its 1123°C melt
Homogeneous electromagnetic calorimeters

CMS at the LHC – scintillating PbWO₄ crystals

Total of 75848 PbWO₄ crystals

Barrel: 36 Supermodules (18 per half-barrel)

61200 Crystals (34 types) – total mass 67.4 t

Endcaps: 4 Dees (2 per Endcap)

14648 Crystals (1 type) – total mass 22.9 t

Pb/Si Preshowers: 4 Dees (2/Endcap)

CMS Barrel

An endcap Dee, 3662 crystals awaiting transport
Sampling electromagnetic calorimeters

ATLAS ‘Accordion’ sampling liquid argon calorimeter at the LHC

Corrugated stainless steel clad Pb absorber sheets, 1-2 mm thick

Immersed in liquid argon (90K)

Multilayer Cu-polyimide readout boards

Collect ionisation electrons with an electric field across 2.1 mm liquid Argon drift gap

1 GeV energy deposit → collect 5.10^6 e⁻
Sampling electromagnetic calorimeters

The LHCb sampling electromagnetic calorimeter at the LHC

Wall of 3312 modules

LHCb module

67 scintillator tiles, each 4 mm thick
 Interleaved with 66 lead plates, each 2 mm thick

Readout through wavelength shifting fibres running through plates to Avalanche Photodiodes

3 types of modules
Liquid Scintillator Calorimeters

Borexino

Detect 0.862 MeV neutrinos from 7Be decays in the sun

300 t ultra pure organic liquid scintillator. Less than 10^{-16} g/g of 238U and 232Th

10^4 photons / MeV at 360 nm
3 ns decay time
Photon mean free path 8 m

Readout

2,212 photo-multiplier 8 inch tubes

Timing 1 ns
Cluster position resolution 16 cm
Liquid Scintillator Calorimeters

Borexino

Top: Internal surface of stainless steel support sphere + PMTs + their optical concentrators.

Bottom: Preparation of outer vessel + close-up of an optical concentrator.
Energy Resolution
Energy Resolution

Energy resolution of a calorimeter where E is energy of incoming particle:

\[
\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c
\]

- **a, stochastic term**: Fluctuations in the number of signal generating processes, i.e., on the number of photo-electrons generated.

- **b, noise term**: Noise in readout electronics, ‘pile-up’ due to other particles from other collision events arriving close in time.
Energy Resolution

\[\frac{\sigma}{E} = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c \]

c, constant term

Imperfections in calorimeter construction (dimension variations)
Non-uniform detector response

Channel to channel intercalibration errors
Fluctuations in longitudinal energy containment

Energy lost in dead material, before or in detector

Crucial to have small constant term for good energy resolution at the highest particle energies
Consider a physics search for a 2 TeV $Z' \rightarrow e^+ e^-$
Suppose each electron has energy $E = 1$ TeV = 1000 GeV

In the CMS electromagnetic calorimeter:
Stochastic term, $a = 3\%$
Noise term, $b = 250$ MeV
Constant term, $c = 0.5\%$

Resultant resolution, $\sigma/E = 0.1\% \oplus 0\% \oplus 0.5\% \sim 0.5\%$
Resolution at high energies dominated by the constant term

Z' mass will be measured to a precision of $\sim \sqrt{2} \times 0.5\% \sim 0.7\% = 14$ GeV

With calorimetry, the resolution, σ/E, improves with increasing particle energy

Goal of calorimeter design - find best compromise between the three contributions
- at a price you can afford!
Intrinsic resolution of homogeneous e.m. calorimeters

Energy released in the detector material mainly ionisation and excitation

Mean energy required to produce a ‘visible’ scintillation photon in a crystal or an electron-ion pair in a noble liquid

Mean number of quanta produced

The intrinsic energy resolution is given by the fluctuations on ‘n’

\[\frac{\sigma_E}{E} = \sqrt{\frac{n}{n}} = \sqrt{\frac{Q}{E}} \]

Typically obtain \(\frac{\sigma_E}{E} \) 1% - 3% / \(\sqrt{E} \) (GeV)

However, in certain cases:
Energy of the incident particle is only transferred to making quanta, and to no other energy dissipating processes, for example in Germanium.

Fluctuations much reduced:

\[\frac{\sigma_E}{E} = \sqrt{\frac{FQ}{E}} \]

where F is the ‘Fano’ factor.

F \approx 0.1 in Ge

Detector resolution in AGATA 0.06% (rms) for 1332 keV photons
Intrinsic em energy resolution for homogeneous calorimeters

The AGATA Germanium detector

Experiment with excited nuclei from a target
1382 keV line width 4.8 keV (fwhm)
Resolution 0.15%
Resolution 0.06% with a source
Energy resolution for crystal em calorimeters

Energy resolution - the CMS PbWO$_4$ crystal calorimeter

Scintillation emission only small fraction of energy loss in crystal, so Fano factor, $F \sim 1$

However – get fluctuations in the avalanche process in the Avalanche Photodiodes (APDs) used for the photo-detection
- gives rise to an **excess noise factor** for the gain of the device

$F \sim 2$ for the crystal + APD combination

$N_{pe} \sim 4500$ photo-electrons released by APD, per GeV of deposited energy

Stochastic term \[a_{pe} = \sqrt{\frac{F}{N_{pe}}} = \sqrt{\frac{2}{4500}} = 2.1\% \]

This assumes total lateral shower containment

In practice energy summed over limited 3x3 or 5x5 arrays of crystals, to minimise added noise

Expect $a_{\text{leak}} = 2\%$ from an energy sum over a 3x3 array of crystals

Expect a stochastic term of \[a = a_{pe} \oplus a_{\text{leak}} = 2.9\% \]

Measured value \[2.8\% \]
Energy resolution

CMS ECAL, 3x3 array of PbWO$_4$ crystals
Test beam electrons

a, stochastic term $= 2.83\%$
c, constant term $= 0.26\%$

Borexino
Photoelectron yield ~ 500 per MeV

Expect $\sqrt{500} / 500 = 4.4\%$
Measured $\sim 5\%$ at 1 MeV
Calibration of the detector

Prior to installation: modules taken to test beams at CERN and elsewhere

In situ in CMS: trigger, record and use known resonances to calibrate the crystals

\[\pi^0 \rightarrow \gamma\gamma \]

\[\eta \rightarrow \gamma\gamma \]

\(Z \rightarrow ee \)

peak at 91 GeV

width of Gaussian 1.01 GeV

Crucial input for resolution estimates for \(H \rightarrow \gamma\gamma \) at 125 GeV
In situ in CMS also use:

W decays, $W \rightarrow e^\pm \nu$

Electron energy, E, measured in the ECAL
Electron momentum, p, measured in the Tracker
Optimize the E/p distributions ($E/p = 1$ ideally)

Phi symmetry (gives quick initial values)

The transverse energy flow, summed over many “minimum bias” collisions, should be the same towards any phi angle

Use this symmetry to calibrate rings of individual crystals sitting at the same pseudorapidity
Getting excellent energy resolution – in a real detector!!

Instrumental resolution of 1.01 GeV from Z -> ee decays in the CMS ECAL Barrel

Note the crucial work needed for the various corrections
Intrinsic resolution of sampling electromagnetic calorimeters

Sampling fluctuations arise due to variations in the number of charged particles crossing the active layers

\[n_{\text{charged}} \propto \frac{E_0}{t} \quad (t = \text{thickness of each absorber layer}) \]

If each sampling is independent \(\sigma_{\text{samp}} / E = \frac{1}{\sqrt{n_{\text{charged}}}} \propto \sqrt{(t / E)} \)

Need \(\sim 100 \) sampling layers to compete with homogeneous devices.

Typically \(\sigma_{\text{samp}/E} \sim 10\% / \sqrt{E} \)
Intrinsic resolution of sampling electromagnetic calorimeters

ATLAS
- stochastic term: ~10%
- constant term: 0.3%

Thickness of the 1-2 mm thick absorber sheets controlled to 6.6 µm to achieve a constant term of 0.3%

LHCb
- stochastic term: 9.4%
- constant term: 0.83%

Also: ATLAS spatial resolution ~5mm / \sqrt{E} (GeV)
Hadronic Calorimetry
Hadronic cascades much more complex than e.m. cascades

Shower development determined by the mean free path, λ_I, between inelastic collisions

The nuclear interaction length is given by $\lambda_I = A / (N_A \sigma_{inel})$, $\sigma_{inel} \approx \sigma_0 A^{0.7}$, $\sigma_0 \approx 35 \text{ mb}$

Expect $\sigma_I \propto A^{2/3}$ and thus $\lambda_I \propto A^{1/3}$.

In practice, $\lambda_I \approx 35 A^{1/3} = 16.7 \text{ cm in iron}$

High energy hadrons interact with nuclei producing secondary particles, mostly π^\pm and π^0

Lateral spread of shower from transverse energy of secondaries, $<p_T> \sim 350 \text{ MeV/c}$
Hadronic Cascades

For a collision with a nucleus:
Multiplicity of secondary particles $\propto \ln(E)$

$\sim 1/3$ of the pions produced are neutral pions, π^0

$n(\pi^0) \sim \ln E\ (GeV) – 4.6$

For a 100 GeV incoming hadron, $n(\pi^0) \approx 18$

The neutral pions quickly decay to two electromagnetic particles (2 photons)

$\pi^0 \rightarrow \gamma\gamma$ in $\sim 10^{-16}$ s

Thus hadronic cascades have two distinct components:

hadronic (largely π^+, π^-, heavy fragments, excited nuclei) and electromagnetic ($\gamma\gamma$)

This gives rise to a much more complex cascade development which limits the ultimate resolution possible for hadronic calorimetry
Hadronic Cascades

Simulations of hadron showers

Red - e.m. component Blue – charged hadrons

Unlike electromagnetic showers, hadron showers do not show a uniform deposition of energy throughout the detector medium.
Hadronic Cascades

Hadronic longitudinal shower development
The e.m. component more pronounced at the start of the cascade than the hadronic component

Shower profile characterised by a peak close to the first interaction, then, an exponential fall off with scale λ_l

$t_{\text{max}} (\lambda_l) \approx 0.2 \ln E[GeV] + 0.7$

$t_{95\%} (cm) \approx a \ln E + b$

To contain 95% of the energy in Iron:

$a = 9.4$, $b=39$. For $E = 100$ GeV, $t_{95\%} \approx 80$ cm

For adequate containment, need $\sim 10 \lambda_l$

In Iron, need 1.67 m. In Copper need 1.35 m

Hadronic lateral shower development
The shower consists of core + halo

95% containment: **cylinder of radius** $\lambda_l = 16.7$ cm in iron

Compare to a radius of **2.19 cm** for an e.m cascade in PbWO$_4$
Electromagnetic versus hadronic scale for calorimetry

\[X_0 \sim 180 \frac{A}{Z^2} \ll \lambda_I \sim 35 A^{1/3} \]

E.M shower size in PbWO4 23 cm deep x 2.19 cm radius

Hadron shower size in Iron 80 cm deep x 16.7 cm radius

Hadron cascades much longer and broader than electromagnetic cascades

Hadron calorimeters much larger than em calorimeters
Detectors for Hadronic Calorimetry
Workers in Murmansk sitting on brass casings of decommissioned shells of the Russian Northern Fleet

Explosives previously removed!

Casings melted in St Petersburg and turned into raw brass plates

Machined in Minsk and mounted to become absorber plates for the CMS Endcap Hadron Calorimeter
The CMS HCAL being inserted into the solenoid

Light produced in the scintillators is transported through optical fibres to Hybrid Photo Diode (HPD) detectors
Light emission from the scintillator tiles blue-violet, $\lambda = 410-425$ nm.

This light is absorbed by wavelength shifting fibers which fluoresce in the green, $\lambda = 490$ nm.

The green light is conveyed via clear fiber waveguides to connectors at the ends of the scintillator megatiles.
CMS Hadron sampling calorimetry

CMS Endcap HCAL

CMS Barrel HCAL

CMS Endcap ECAL
Energy resolution of hadronic calorimeters

Hadron calorimetry resolution
Strongly affected by the energy lost as ‘invisible energy’:
- nuclear excitation followed by delayed photons (by up to to ~1μsec, so usually undetected)
- soft neutrons
- nuclear binding energy

Fluctuations in the ‘invisible energy’ play an important part in the degradation of the intrinsic energy resolution

Further degradation
If the calorimeter responds differently as a function of energy to the em component of the cascade ($\pi^0 \rightarrow \gamma \gamma$)

$F_{\pi^0} \sim 1/3$ at low energies

$F_{\pi^0} \sim a \log(E)$ (the em part increases or ‘freezes out’ with energy)
In general, the **hadronic** component of a hadron shower produces a smaller signal than the **em** component

so \(e/h > 1 \)

Consequences for \(e/h \neq 1 \)

- response with energy is non-linear
- fluctuations of the **em** component of the cascade, \(F_{\pi^0} \), worsen the energy resolution, \(\sigma_E/E \)

The fluctuations are non-Gaussian, consequently

- \(\sigma_E/E \) improves more slowly with energy than for an electromagnetic calorimeter
- More as \(1/E \) than \(1/\sqrt{E} \)

‘Compensating’ sampling hadron calorimeters seek to restore \(e/h = 1 \) to achieve better resolution and linearity (see backup slide)
Compensated hadron calorimetry & high precision em calorimetry are usually incompatible

In CMS, hadron measurement combines HCAL (Brass/scint) and ECAL(PbWO$_4$) data

Effectively a hadron calorimeter divided in depth into two compartments

Neither compartment is ‘compensating’:
\[\frac{e}{h} \sim 1.6 \text{ for ECAL} \]
\[\frac{e}{h} \sim 1.4 \text{ for HCAL} \]

Hadron energy resolution is degraded and response is energy-dependent

Stochastic term \[a = 120\% \]
Constant term \[c = 5\% \]

CMS energy resolution for single pions up to 300GeV
Jets and Particle Flow
At colliders, hadron calorimeters serve primarily to measure jets and missing E_T

Single hadron response gives an indication of the level to be expected for jet energy resolution

Make combined use of

- Tracker information
- fine grained information from the ECAL and HCAL detectors

Jets from a simulated event in CMS
Jet measurements

Traditional approach
Components of jet energy only measured in ECAL and HCAL

In a typical jet
- 65% of jet energy in charged hadrons
- 25% in photons (mainly from $\pi^0 \rightarrow \gamma\gamma$)
- 10% in neutral hadrons

Particle Flow Calorimetry

- Charged particles measured with tracker, when better
- Photons measured in ECAL
- Leaves only neutral hadrons in HCAL (+ECAL)

Only 10% of the jet energy (the neutral hadrons) left to be measured in the poorer resolution HCAL

Dramatic improvements for overall jet energy resolution
Jet measurements with Particle Flow

Momента of particles inside a jet

Consider a quark/gluon jet, total $p_T = 500$ GeV/c
Average p_T carried by the stable constituent particles of the jet

~ 10 GeV

Jets with $p_T < 100$ GeV, constituents \mathcal{O} (GeV)

For charged particles with momenta \mathcal{O} (GeV)
better to use momentum resolution of the Tracker
Particle Flow versus Calorimetry alone

- CMS - large central magnetic field of 4T
- Very good charged particle track momentum resolution
- Good separation of charged particle energy deposits from others in the calorimeters
- Good separation from other tracks

Large improvement in jet resolution at low P_T using the combined resolution of the Calorimetry and Tracking systems
Higgs and Calorimetry
Event recorded with the CMS detector in 2012
Characteristic of Higgs boson decay to 2 photons

No charged tracks present, so must be photons

<table>
<thead>
<tr>
<th>EM calorimetry</th>
<th>Hadronic calorimeter</th>
<th>Tracker</th>
<th>Muon detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.m. energy proportional to green tower heights</td>
<td>Hadron energy proportional to orange tower heights</td>
<td>Charged tracks Orange curves</td>
<td>Muon detector hits Blue towers</td>
</tr>
</tbody>
</table>
Can **YOU** calculate the **Effective mass** for the 2 high energy photons in the event??

Photons

<table>
<thead>
<tr>
<th></th>
<th>ECAL Energy (GeV)</th>
<th>Angle Phi ** (radians)**</th>
<th>Pseudo-rapidity ** (η)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon 1</td>
<td>90.0264</td>
<td>0.719</td>
<td>0.0623</td>
</tr>
<tr>
<td>Photon 2</td>
<td>62.3762</td>
<td>2.800</td>
<td>-0.811</td>
</tr>
</tbody>
</table>

see definitions in next slide

You can also ask Professor Moretti for his estimate!
CMS Event – angle definitions

Transverse view
Angle of the photons in the r-phi plane, Φ_1 and Φ_2

$\Phi_1 = 0.719\,\text{ radians}$
$\Phi_2 = 2.800\,\text{ radians}$

Longitudinal view
Angle of the photons wrt the +ve direction of the beam axis, θ_1 and θ_2

θ related to pseudo-rapidity (η) by

$\eta = -\ln \left[\tan \left(\frac{\theta}{2} \right) \right]$

$\eta_1 = 0.0623$
$\eta_2 = -0.8110$
The crowning glory of CMS (and ATLAS) calorimetry!

$19.7 \text{fb}^{-1} (8 \text{ TeV}) + 5.1 \text{fb}^{-1} (7 \text{ TeV})$

CMS

$H \rightarrow \gamma \gamma$

$S/(S+B)$ weighted sum

- Data
- S+B fits (weighted sum)
- B component
- ±1σ
- ±2σ

$\hat{\mu} = 1.14^{+0.26}_{-0.23}$

$\hat{m}_H = 124.70 \pm 0.34 \text{ GeV}$

B component subtracted

$m_{\gamma \gamma} (\text{GeV})$
Calorimetry a key detector technique for particle physics

In this talk, calorimetry for photons/electrons from ~1 MeV, to O(50 GeV) for Z decays, to O(1 TeV) for jets

Calorimeters playing a crucial role for physics at the LHC, eg $H \rightarrow \gamma\gamma$, $Z' \rightarrow ee$, SUSY (missing E_T)

Calorimeters indispensible for neutrino and missing E_T physics

Wide variety of technologies available. Calorimeter design is dictated by physics goals, experimental constraints and cost. Compromises necessary.

References:
Backups
Future directions in Calorimetry

The International Linear Collider (ILC)

Use Particle Flow, aided by finely segmented calorimetry

Very high transverse segmentation
ECAL \(\sim 1 \times 1 \) cm\(^2\) SiW cells – CALICE
HCAL \(\sim 3 \times 3 \) cm\(^2\) Steel/scintillator

High longitudinal sampling
30 layers ECAL and 40 layers HCAL

CALICE prototype
1.4/2.8/4.2 mm thick W plates \((30X_0)\)
Interleaved with Silicon wafers
Read out at level of 1x1 cm\(^2\) pads

Resolution for electrons
Stochastic term \(a \sim 17\% \)
Constant term \(c \sim 1.1\% \)
Particle Flow Calorimetry in CMS

Missing E_T resolution for Di-jet events in CMS

CMS missing E_T resolution < 10 GeV over whole ΣE_T range up to 350GeV
Factor 2 improvement on calorimetry by using Particle Flow technique
Consequences for $e/h \neq 1$
- response with energy is non-linear
- fluctuations on F_{π^0} contribute to σ_E/E

Since the fluctuations are non-Gaussian,
- σ_E/E scales more weakly than $1/\sqrt{E}$, more as $1/E$

Deviations from $e/h = 1$ also contribute to the constant term

‘Compensating’ sampling hadron calorimeters

Retrieve $e/h = 1$ by compensating for the loss of invisible energy, several approaches:
- Weighting energy samples with depth
- Use large elastic cross section for MeV neutrons scattering off hydrogen in the organic scintillator
- Use 238U as absorber. 238U fission is exothermic. Release of additional neutrons

Neutrons liberate recoil protons in the active material
- Ionising protons contribute directly to the signal
- Tune absorber/scintillator thicknesses for $e/h = 1$

Example Zeus: 238U plates (3.3mm)/scintillator plates (2.6mm), total depth 2m, $e/h = 1$
- Stochastic term $0.35/\sqrt{E}$(GeV)

Additional degradation to resolution, calorimeter imperfections:
- Inter-calibration errors, response non-uniformity (laterally and in depth), energy leakage, cracks
Homogeneous electromagnetic calorimeters

ALICE at the LHC – scintillating PbWO$_4$ crystals

Avalanche photo diode readout

Some of the 17,920 PbWO$_4$ crystals for ALICE (PHOS)
Homogeneous calorimeters

Three main types: Scintillating crystals Glass blocks (Cerenkov radiation) Noble liquids

<table>
<thead>
<tr>
<th>Crystals</th>
<th>NaI(Tl)</th>
<th>CsI(Tl)</th>
<th>CsI</th>
<th>BGO</th>
<th>PbWO$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (g/cm3)</td>
<td>3.67</td>
<td>4.53</td>
<td>4.53</td>
<td>7.13</td>
<td>8.28</td>
</tr>
<tr>
<td>X_0 (cm)</td>
<td>2.59</td>
<td>1.85</td>
<td>1.85</td>
<td>1.12</td>
<td>0.89</td>
</tr>
<tr>
<td>R_M (cm)</td>
<td>4.5</td>
<td>3.8</td>
<td>3.8</td>
<td>2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>Decay time (ns)</td>
<td>250</td>
<td>1000</td>
<td>10</td>
<td>300</td>
<td>5</td>
</tr>
</tbody>
</table>

- **slow component**
- **Emission peak (nm)**
 - 410
 - 565
- **light yield γ/MeV**
 - 4×10^4
 - 5×10^4
 - 4×10^4
 - 8×10^3
 - 1.5×10^2
- **Photoelectron yield**
 - 1
 - 0.4
 - 0.1
 - 0.15
 - 0.01
- **Rad. hardness (Gy)**
 - 1
 - 10
 - 10^3
 - 1
 - 10^5

Lead glass, SF-6

OPAL at LEP

- $X_0 = 1.69$ cm,
- $\rho = 5.2$ g/cm3

Other uses:

- **Barbar @PEP II**
 - 10 ms inter’n rate
 - Good light yield, good S/N

- **KTeV at Tevatron**, High rate, Good resolution

- **L3@LEP,** 25 μs bunch crossing, Low rad’n dose

- **CMS at LHC**
 - 25 ns bunch crossing, high radiation dose

- **ALICE**

- **PANDA**
The Power of Calorimetry
A high energy DiJet event in CMS

A high mass dijet event in the first 120nb$^{-1}$ of data, at 2.13 TeV taken in CMS with pp collisions at 7 TeV, July 2010
Extra info – em shower depth

How many X_0 to adequately contain an em shower?

Rule of thumb

RMS spread in shower leakage at the back $\sim 0.5 \times$ average leakage at the back
CMS - keep rms spread $< 0.3\%$ \Rightarrow leakage $< 0.65\%$ \Rightarrow crystals $25X_0$ (23cm) long

Other relations

$$<t_{95\%}> \sim t_{\text{max}} + 0.08Z + 9.6$$
$$<t_{98\%}> \sim 2.5 \ t_{\text{max}}$$
$$<t_{98\%}> \sim t_{\text{max}} + 4 \lambda_{\text{att}}$$

Tail of cascade - photons of a few MeV \sim at the min in the mass attenuation coefficient

$$\lambda_{\text{att}} \sim 3.4X_0 \sim \text{photon mean free path.}$$

λ_{att} is associated with the exponential decrease of the shower after t_{max}
Comment, em longitudinal profile, Pb versus Cu:

The coulomb field in Pb, Z=82 with $E_c = 7.3$ MeV means that bremsstrahlung dominates over ionisation to much lower shower particle energies than for example in Cu, Z=29 with $E_c = 20.2$ MeV.

As a consequence the depth (in X_o) of a shower proceeds further in Pb than in Cu.
Homogeneous liquid Kr electromagnetic calorimeters

NA48 Liquid Krypton Ionisation chamber (T = 120K)
No metal absorbers: quasi homogeneous

NA48 Liquid Krypton
2cmx2cm cells
$X_0 = 4.7\text{cm}$
125cm length ($27X_0$)
$\rho = 5.5\text{cm}$

Energy resolution $a/E (%)$

- $a \sim 3.3\%$
- $b \sim 40\text{ MeV}$
- $c \sim 0.2$

full device (prel.)
Homogeneous calorimetry

CMS PbWO$_4$ - photodetectors

Barrel
Avalanche photodiodes (APD)
Two 5x5 mm2 APDs/crystal
Gain 50
QE ~75%
Temperature dependence -2.4%/°C

Endcaps
Vacuum phototriodes (VPT)
More radiation resistant than Si diodes
- UV glass window
- Active area ~ 280 mm2/crystal
- Gain 8 -10 (B=4T)
- Q.E. ~20% at 420nm
Homogeneous e.m. calorimeters

PbWO$_4$ - CMS ECAL energy resolution

Electron energy resolution as a function of energy

Electrons centrally (4mmx4mm) incident on crystal

Resolution 0.4% at 120 GeV

Energy resolution at 120 GeV

Electrons incident over full crystal face

Energy sum over 5x5 array wrt hit crystal.

Universal position ‘correction function’ for the reconstructed energy applied

Resolution 0.44%
Central core: multiple scattering

Peripheral halo: propagation of less attenuated photons, widens with depth of the shower
EM showers, longitudinal profile

Shower parametrization

\[\frac{dE}{dt} \propto t^\alpha e^{\beta t} \]

Longitudinal development

EM showers (EGS4, 10 GeV e\(^{-}\))

<table>
<thead>
<tr>
<th>Material</th>
<th>Z</th>
<th>A</th>
<th>(\rho) [g/cm(^3)]</th>
<th>(X_0) [g/cm(^2)]</th>
<th>(\lambda_a) [g/cm(^2)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen (gas)</td>
<td>1</td>
<td>1.01</td>
<td>0.0899 (g/l)</td>
<td>63</td>
<td>50.8</td>
</tr>
<tr>
<td>Helium (gas)</td>
<td>2</td>
<td>4.00</td>
<td>0.1786 (g/l)</td>
<td>94</td>
<td>65.1</td>
</tr>
<tr>
<td>Beryllium</td>
<td>4</td>
<td>9.01</td>
<td>1.848</td>
<td>65.19</td>
<td>75.2</td>
</tr>
<tr>
<td>Carbon</td>
<td>6</td>
<td>12.01</td>
<td>2.265</td>
<td>43</td>
<td>86.3</td>
</tr>
<tr>
<td>Nitrogen (gas)</td>
<td>7</td>
<td>14.01</td>
<td>1.25 (g/l)</td>
<td>38</td>
<td>87.8</td>
</tr>
<tr>
<td>Oxygen (gas)</td>
<td>8</td>
<td>16.00</td>
<td>1.428 (g/l)</td>
<td>34</td>
<td>91.0</td>
</tr>
<tr>
<td>Aluminium</td>
<td>13</td>
<td>26.98</td>
<td>2.7</td>
<td>24</td>
<td>106.4</td>
</tr>
<tr>
<td>Silicon</td>
<td>14</td>
<td>28.09</td>
<td>2.33</td>
<td>22</td>
<td>106.0</td>
</tr>
<tr>
<td>Iron</td>
<td>26</td>
<td>55.85</td>
<td>7.87</td>
<td>13.9</td>
<td>131.9</td>
</tr>
<tr>
<td>Copper</td>
<td>29</td>
<td>63.55</td>
<td>8.96</td>
<td>12.9</td>
<td>134.9</td>
</tr>
<tr>
<td>Tungsten</td>
<td>74</td>
<td>183.85</td>
<td>19.3</td>
<td>6.8</td>
<td>185.0</td>
</tr>
<tr>
<td>Lead</td>
<td>82</td>
<td>207.19</td>
<td>11.35</td>
<td>6.4</td>
<td>194.0</td>
</tr>
<tr>
<td>Uranium</td>
<td>92</td>
<td>238.03</td>
<td>18.95</td>
<td>6.0</td>
<td>199.0</td>
</tr>
</tbody>
</table>

For \(Z > 6\): \(\lambda_a > X_0\)
Crystals: building blocks

These crystals make light!

Crystals are basic components of electromagnetic calorimeters aiming at precision.
Scintillation: a three step process

Scintillator + Photo Detector = Detector

How does it work

PMT, PD, APD

absorption e.g. γ

conversion

emission

$\int(E) = I_0(E) e^{-\mu d}$

Energy \rightarrow Excitation

Conduction band

Valence band

Conduction band

Valence band

E_g

rad. emission γ

$\nu_{\text{ex}} > \nu_{\text{em}}$
Variation in the lattice
(e.g. defects and impurities)

→

local electronic energy levels in the energy gap

If these levels are unoccupied electrons moving in the conduction band may enter these centres

The centres are of three main types:

• **Luminescence centres** in which the transition to the ground state is accompanied by photon emission

• **Quenching centres** in which radiationless thermal dissipation of excitation energy may occur

• **Traps** which have metastable levels from which the electrons may subsequently return to the conduction band by acquiring thermal energy from the lattice vibrations or fall to the valence band by a radiationless transition
Scintillating crystals

PbWO₄: $\lambda_{\text{excit}} = 300 \text{nm} ; \lambda_{\text{emiss}} = 500 \text{nm}$

Excitation

Radiative emission

Configurational coordinates

Stokes shift

$\Delta \lambda = \lambda_{\text{em}} - \lambda_{\text{ex}}$

ΔE_a

Q_0^g, Q_0^e

E

D

A

B

C

D

ν_{ex}

ν_{em}

E

A

B

C

D

λ_{excit}

λ_{emiss}

$PbWO_4$
Scintillating crystals

Efficiency of transfer to luminescent centres

- \(E_{\text{dep}} \rightarrow e-h \)
- \(E_s = \beta E_g \) \(\beta > 1 \)
- \(N_{eh} = E_{\text{dep}} / \beta E_g \)

Efficiency of radiative transfer to luminescent centres

- \(N_\gamma = SQN_{eh} \)

- \(\eta_\gamma = N_\gamma / E_{\text{dep}} = SQN_{eh} / E_{\text{dep}} = SQ / \beta E_g \)

- \(S, Q \approx 1, \) \(\beta E_g \) as small as possible
- medium transparent to \(\lambda_{\text{emiss}} \)
A CMS Supermodule with 1700 tungstate crystals

Installation of the last SM into the first half of the barrel

A CMS endcap ‘supercrystal’
25 crystals/VPTs
Copper has been selected as the absorber material because of its density. The HB is constructed of two half-barrels each of 4.3 meter length. The HE consists of two large structures, situated at each end of the barrel detector and within the region of high magnetic field. Because the barrel HCAL inside the coil is not sufficiently thick to contain all the energy of high energy showers, additional scintillation layers (HOB) are placed just outside the magnet coil. The full depth of the combined HB and HOB detectors is approximately 11 absorption lengths.

The hadron barrel (HB) and hadron endcap (HE) calorimeters are sampling calorimeters with 50 mm thick copper absorber plates which are interleaved with 4 mm thick scintillator sheets.
Electromagnetic shower

Big European Bubble Chamber filled with Ne:H$_2$ = 70%:30%, 3T Field, L=3.5 m, $X_0 \approx 34$ cm, 50 GeV incident electron
We study the inclusive dijet final state using the **dijet mass spectrum** and the **dijet centrality ratio** observables.

Together the Dijet Mass and Ratio provide a **test of QCD** and a **sensitive search** for new physics beyond the Standard Model.

- Dijet mass distribution is a simple check of rate vs dijet mass from QCD and PDFs.
- Dijet centrality ratio is a detailed measure of QCD dynamics from angular distribution.

- Dijet mass provides most sensitive "bump" hunt for new particles decaying to dijets.
- Dijet centrality ratio can confirm that a "bump" is not QCD fluctuation.

- Dijet centrality ratio is more sensitive than the dijet mass to contact interactions from quark compositeness.
 - when all experimental uncertainties are considered.
Jet Energy Resolution with stand alone calorimetry

For a single hadronic particle: $\sigma_E / E = a / \sqrt{E} \oplus c$ (neglect electronic noise)

Jet with low particle energies, resolution is dominated by a, and at high particle energies by c

If the stochastic term, a, dominates:
- error on Jet energy ~ same as for a single particle of the same energy

If the constant term dominates:
- error on Jet energy is less than for a single particle of the same energy

For example:
1 TeV jet composed of four hadrons of equal energy
Calorimeter with $\sigma_E / E = 0.3 / \sqrt{E} \oplus 0.05$

$\delta E_{\text{Jet}} = 25 \text{ GeV}$,
compared to $\delta E = 50 \text{ GeV}$, for a single 1 TeV hadron
Jet s in CMS at the LHC, pp collisions at 7TeV

Red - ECAL, Blue - HCAL energy deposits
Yellow – Jet energy vectors