

Introduction to FFAGs

Rob Edgecock STFC Rutherford Appleton Laboratory

Outline

Focus on particle accelerators

- Introduction to accelerators
- Accelerator applications

Cancer therapy

- Treatments
- Radiotherapy
- Charged particle therapy

Advantages of FFAGs for these applications

- Used to increase KE/momentum of charged particles
- All charged particles accelerated: e⁻, p⁺, H⁻, ionsⁿ⁺
- Acceleration via electric fields
- DC......electrostatic acceleration: cathode ray tube voltage multiplier van der Graaff generator etc
- Energy limited by electrical breakdown

John Cockcroft & Ernest Walton Voltage Multiplier Cavendish Laboratory, 1932.

Van der Graaff generator

Alternating Radio Frequency voltage. Each step gives a small energy increase to the particle.

Linear accelerator.

Easier to design & operate.

But expensive at higher energies.

400 MeV p⁺ linac at Fermilab

"Circular" accelerators: 1st type: cyclotrons

First circula PSI cyclotron y Livingston at 600MeV 0.

Energy: ter = 13cm

"Circular" accelerators: 2nd type: synchrotrons

Alternating Gradient or Strong Focussing Beam alternately focussed in horiz and vert planes.

Sextupole (LEP)
Correction of chromatic

"Circular" accelerators: 2nd type: synchrotrons

Accelerator Applications

- Accelerators created for Particle Physics
- Many developments driven by PP
- Now used for other applications
 - >30000 accelerators already in use around the World
 - Annual sales: >\$3.5B
 - Annual product, etc, sales: >\$0.5T
 - Fit into a few broad categories:
 - Energy
 - Environment
 - Healthcare
 - Industry
 - Security and defence
 - Research

>30000 accelerators in use world-wide:

44% for radiotherapy

41% for ion implantation

9% for industrial applications

4% low energy research

1% medical isotope production

<1% research

>30000 accelerators in use world-wide:

44% for radiotherapy

41% for ion implantation

9% for industrial applications

4% low energy research

1% medical isotope production

<1% research

"Curing" materials; sterilisation; carbon dating; treating flue gases; treating water; etc

>30000 accelerators in use world-wide:

44% for radiotherapy

41% for ion implantation

9% for industrial applications

4% low energy research

1% medical isotope production

<1% research

Microanalysis of materials, mass spectroscopy, PIXE, etc

>30000 accelerators in use world-wide:

44% for radiotherapy

41% for ion implantation

9% for industrial applications

4% low energy research

1% medical isotope production

For PET and SPECT medical imaging, etc

>30000 accelerators in use world-wide:

44% for radiotherapy

41% for ion implantation

9% for industrial applications

4% low energy research

1% medical isotope production

<1% research

Physicists Introduction to Cancer

It starts with mutations of a single cell typically 6 are required to make it cancerous

- Mutations accumulate over time
- · Can occur by accident
- Usually requires a "carcinogen" tobacco (50) other chemicals radiation (e.g. sun)

Some Statistics

Survival Trends for Selected Cancers: 1971-2007

Ten Year Relative Survival (%), Adults (15-99 Years), Selected Cancers, England and Wales

Treatments

- Cancer therapy:
 It's all about minimising collateral damage!
- Killing or removing just cancerous cells
- Damage to healthy cells leads to side-effects

```
Three main types:
surgery
radiotherapy
chemotherapy
```

- Uses beams of ionising radiation
- Mainly X-rays, but see later
- · Usually produced externally and directed onto tumour

Radiotherapy

Indirect action dominant for x-rays

Direct action

Ionisation from radiation kills cells in two ways

Multiple DNA chain breaks preferred

Radiotherapy

- "Standard" radiotherapy uses X-rays
- Created using electron linear accelerator
- Energy ~4-20 MeV
- X-rays produced in metal foil

Typical treatment: ~60Gy

· Delivered in "fractions" of ~2Gy

Beam Delivery

· Old technique: treat whole tumour in one go

Newer technique: Intensity Modulated Radiotherapy

CyberKnife

It's possible to do better!

Proton Therapy

Proton Therapy

Proton Therapy

protonGuys.com

Other Ions

Group→1 ↓Period		2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																		2 He
2	3 Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	*	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
			*	57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			Τ.	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb		
			*	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Charged Particle Therapy

Carbon Therapy

• In operation:

Europe: 3 China: 2 Japan: 5

• Construction:

Europe: 1 China: 1

South Korea: 1

- Significant PP input to those in Europe
- Two based on CERN design
- Main problem: size!

Roles of FFAGs

- Combines features of cyclotrons and synchrotrons
- Interesting for particle therapy, ADSR, PP and others
- Particularly in intermediate energy range

• 1950s/60s: most extensive work at MURA

20 to 400 keV machine Operated at

MURA in 1956

• 1950s/60s: most extensive work at MURA

Spiral sector machine

Operated at MURA in 1957

• 1950s/60s: most extensive work at MURA

100keV to 50MeV machine

Operated at MURA in 1961

(Non-scaling) FFAG Development

- Originally invented for:
 - fast acceleration
 - large DA
- 2004:
 - studies for applications
 - unique features
 - needed to build one

EMMA

EMMA

PAMELA

- Being done in parallel to EMMA
- NS-FFAG carbon ion and proton therapy facility:
 - 250 MeV protons
 - 400 MeV/u carbon ions
 - gantry(ies), with spot scanning

PAMELA

More recent developments

- New FFAG design
- More cyclotron-like
 - fixed RF frequency
 - very high beam currents
- Carbon therapy

Carbon therapy

Others

- Radioisotope production
 - 10-30 MeV
 - 20mA: >20 times existing cyclotrons
- Accelerator Driven Systems (ADS)

MYRRHA project, Belgium

FFAG equivalent.

Much less well developed, but much cheaper to have redundancy

Conclusions

- Non-scaling FFAGs:
 - Unique form of accelerator
 - Combine features of cyclotrons and synchrotrons
 - More flexible than other circular accelerators
- World's first machine built in DL
- Being developed for:
 - particle physics: muon and proton acceleration
 - cancer therapy: with electrons (x-rays), protons, carbon ions, neutrons (BNCT)
 - energy generation: ADSR
- One of few places in accelerator R&D that UK has lead