Introduction to FFAGs # Rob Edgecock STFC Rutherford Appleton Laboratory #### **Outline** #### Focus on particle accelerators - Introduction to accelerators - Accelerator applications #### Cancer therapy - Treatments - Radiotherapy - Charged particle therapy #### Advantages of FFAGs for these applications - Used to increase KE/momentum of charged particles - All charged particles accelerated: e⁻, p⁺, H⁻, ionsⁿ⁺ - Acceleration via electric fields - DC......electrostatic acceleration: cathode ray tube voltage multiplier van der Graaff generator etc - Energy limited by electrical breakdown John Cockcroft & Ernest Walton Voltage Multiplier Cavendish Laboratory, 1932. Van der Graaff generator Alternating Radio Frequency voltage. Each step gives a small energy increase to the particle. Linear accelerator. Easier to design & operate. But expensive at higher energies. 400 MeV p⁺ linac at Fermilab "Circular" accelerators: 1st type: cyclotrons First circula PSI cyclotron y Livingston at 600MeV 0. Energy: ter = 13cm "Circular" accelerators: 2nd type: synchrotrons Alternating Gradient or Strong Focussing Beam alternately focussed in horiz and vert planes. Sextupole (LEP) Correction of chromatic "Circular" accelerators: 2nd type: synchrotrons #### **Accelerator Applications** - Accelerators created for Particle Physics - Many developments driven by PP - Now used for other applications - >30000 accelerators already in use around the World - Annual sales: >\$3.5B - Annual product, etc, sales: >\$0.5T - Fit into a few broad categories: - Energy - Environment - Healthcare - Industry - Security and defence - Research >30000 accelerators in use world-wide: 44% for radiotherapy 41% for ion implantation 9% for industrial applications 4% low energy research 1% medical isotope production <1% research >30000 accelerators in use world-wide: 44% for radiotherapy 41% for ion implantation 9% for industrial applications 4% low energy research 1% medical isotope production <1% research "Curing" materials; sterilisation; carbon dating; treating flue gases; treating water; etc >30000 accelerators in use world-wide: 44% for radiotherapy 41% for ion implantation 9% for industrial applications 4% low energy research 1% medical isotope production <1% research Microanalysis of materials, mass spectroscopy, PIXE, etc >30000 accelerators in use world-wide: 44% for radiotherapy 41% for ion implantation 9% for industrial applications 4% low energy research 1% medical isotope production For PET and SPECT medical imaging, etc >30000 accelerators in use world-wide: 44% for radiotherapy 41% for ion implantation 9% for industrial applications 4% low energy research 1% medical isotope production <1% research #### **Physicists Introduction to Cancer** It starts with mutations of a single cell typically 6 are required to make it cancerous - Mutations accumulate over time - · Can occur by accident - Usually requires a "carcinogen" tobacco (50) other chemicals radiation (e.g. sun) #### **Some Statistics** **Survival Trends for Selected Cancers: 1971-2007** Ten Year Relative Survival (%), Adults (15-99 Years), Selected Cancers, England and Wales #### **Treatments** - Cancer therapy: It's all about minimising collateral damage! - Killing or removing just cancerous cells - Damage to healthy cells leads to side-effects ``` Three main types: surgery radiotherapy chemotherapy ``` - Uses beams of ionising radiation - Mainly X-rays, but see later - · Usually produced externally and directed onto tumour ### **Radiotherapy** Indirect action dominant for x-rays Direct action Ionisation from radiation kills cells in two ways Multiple DNA chain breaks preferred #### Radiotherapy - "Standard" radiotherapy uses X-rays - Created using electron linear accelerator - Energy ~4-20 MeV - X-rays produced in metal foil Typical treatment: ~60Gy · Delivered in "fractions" of ~2Gy ### **Beam Delivery** · Old technique: treat whole tumour in one go Newer technique: Intensity Modulated Radiotherapy **CyberKnife** It's possible to do better! ### **Proton Therapy** # **Proton Therapy** ## **Proton Therapy** protonGuys.com ### **Other Ions** | Group→1
↓Period | | 2 | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |--------------------|----------|----------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|------------|-----------|------------|------------| | 1 | 1
H | | | | | | | | | | | | | | | | | | 2
He | | 2 | 3
Li | 4
Be | | | | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | 10
Ne | | 3 | 11
Na | 12
Mg | | | | | | | | | | | | 13
Al | 14
Si | 15
P | 16
S | 17
Cl | 18
Ar | | 4 | 19
K | 20
Ca | | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 5 | 37
Rb | 38
Sr | | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | 6 | 55
Cs | 56
Ba | * | 71
Lu | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
TI | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 7 | 87
Fr | 88
Ra | * | 103
Lr | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rg | 112
Cn | 113
Uut | 114
Fl | 115
Uup | 116
Lv | 117
Uus | 118
Uuo | | | | | * | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | | | | | | | Τ. | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er | Tm | Yb | | | | | | | * | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | | | # **Charged Particle Therapy** #### **Carbon Therapy** • In operation: Europe: 3 China: 2 Japan: 5 • Construction: Europe: 1 China: 1 South Korea: 1 - Significant PP input to those in Europe - Two based on CERN design - Main problem: size! #### **Roles of FFAGs** - Combines features of cyclotrons and synchrotrons - Interesting for particle therapy, ADSR, PP and others - Particularly in intermediate energy range • 1950s/60s: most extensive work at MURA 20 to 400 keV machine Operated at MURA in 1956 • 1950s/60s: most extensive work at MURA Spiral sector machine Operated at MURA in 1957 • 1950s/60s: most extensive work at MURA 100keV to 50MeV machine Operated at MURA in 1961 ## (Non-scaling) FFAG Development - Originally invented for: - fast acceleration - large DA - 2004: - studies for applications - unique features - needed to build one #### **EMMA** ## **EMMA** #### **PAMELA** - Being done in parallel to EMMA - NS-FFAG carbon ion and proton therapy facility: - 250 MeV protons - 400 MeV/u carbon ions - gantry(ies), with spot scanning ## **PAMELA** ## More recent developments - New FFAG design - More cyclotron-like - fixed RF frequency - very high beam currents - Carbon therapy # **Carbon therapy** #### **Others** - Radioisotope production - 10-30 MeV - 20mA: >20 times existing cyclotrons - Accelerator Driven Systems (ADS) #### **MYRRHA** project, Belgium FFAG equivalent. Much less well developed, but much cheaper to have redundancy #### **Conclusions** - Non-scaling FFAGs: - Unique form of accelerator - Combine features of cyclotrons and synchrotrons - More flexible than other circular accelerators - World's first machine built in DL - Being developed for: - particle physics: muon and proton acceleration - cancer therapy: with electrons (x-rays), protons, carbon ions, neutrons (BNCT) - energy generation: ADSR - One of few places in accelerator R&D that UK has lead