Thesis Defense

 J/ψ meson in association with a W[±] boson cross section ratio measurement with the ATLAS detector using proton-proton collisions at center of mass energy Vs = 8 TeV from the Large Hadron Collider

for the degree of Doctor of Philosophy

in the area of Experimental High Energy Particle Physics from the Homer L. Dodge Department of Physics and Astronomy

The University of Oklahoma

David Bertsche April 26th 2016

Outline

- Particle Physics Overview
- Theoretical Motivation for $J/\psi + W^{\pm}$ Analysis
 - Experimental Apparatus

The Large Hadron Collider

The ATLAS Detector

• Analysis Procedure and Results

Particle Physics - What is everything made of and what holds it together?

- 460 370 B.C. Democritus
- 1773 1829 Thomas Young
- 1923 Arthur Compton
- 1924 Louis de Broglie

All matter is made of indivisible particles called **atoms Wave** theory of light Discovers the **quantum** (particle) nature of x rays, photons are particles Proposes that matter has **wave properties**

• 1953

--- Beginning of a proliferation of particle discoveries, modern era of collider experiments ---

Standard Model of Particle Physics

Field theory, Particles have associated fields.

- 3 principles:
 - Relativity
 - Quantum Mechanics
 - Gauge Invariance
- Outside Ring Fermions: matter particles – spin 1/2

Center

Bosons: force carriers – integer spin

- All Standard Model fundamental particles now discovered:
 - electron: ~1898
 - Higgs: 2012

Standard Model of Particle Physics

Field theory, Particles have associated fields.

- 3 principles:
 - Relativity
 - Quantum Mechanics
 - Gauge Invariance
- Outside Ring Fermions: matter particles – spin 1/2

Center

Bosons: force carriers – integer spin

- All Standard Model fundamental particles now discovered:
 - electron: ~1898
 - Higgs: 2012

J/ψ Meson

- Bound state cc 'charmonium'
- Discovered November 1974
- Validated the quark model
- 1976 Nobel Prize in Physics
- 12% decay to: $J/\psi \rightarrow e^+e^ J/\psi \rightarrow \mu^+\mu^-$

W[±] Boson

- Fundamental particle, carries the weak nuclear force
- Discovered 1983, SPS accelerator at CERN
- Validated the electroweak model
- 1984 Nobel Prize in Physics (Rubbia and van der Meer)
- 10.9% decay to: $W^{\pm} \rightarrow \ell^{\pm} \overline{\nu}$

26/04/2016

$J/\psi + W^{\pm}$ measurement: Theory Motivation

- Production mechanism of charmonium in hadronic collisions not fully understood
- Relative contribution of Color Octet (CO) vs Color Singlet (CS) models unknown
- Requiring an associated object (W[±] in this case) filters the possible diagrams

Leading Order Color Octet

$$u\bar{d} \to c\bar{c}[J/\psi] + W^+$$

 J/ψ + W[±] can be produced at leading order only in the CO model because the W[±] does not interact strongly.

CO was initially considered the dominant mechanism.

$J/\psi + W^{\pm}$ measurement: Theory Motivation

• In 2013, theorists proposed that the next to leading order (NLO) Color Singlet (CS) model could have a comparable contribution. Evidence corroborates this.

Next to Leading Order Color Singlet

(a)
$$s+g
ightarrow W+c+J/\psi$$

(b) $q + \bar{q}' \rightarrow W + \gamma^* \rightarrow W + J/\psi$

(a) Strange quark - gluon fusion, charm hadronizes into J/ ψ

(b) Quark - antiquark interaction, off shell photon produces J/ψ

J/ψ + W[±] measurement: Theory Motivation

- Contribution of double parton scattering (DPS) vs single parton scattering (SPS) processes unknown
- J/ψ + W[±] measurements can probe this using the opening angle, $\Delta \phi(J/\psi,W)$ between the two particles

The Large Hadron Collider (LHC)

Overall view of the LHC experiments.

- 27 km circumference
- ~100 m underground
 - Began operations 2008
 - Accelerates *protons* to 99.9999 % *c*

٠

- proton-proton collisions briefly create exotic particles
- Detectors quickly photograph them

26/04/2016

LHC Dipole Magnet

- NbTi superconducting wire with liquid He at 1.9 K
- Opposite 8 T fields in each beampipe
- 14 TeV design energy
- 25 ns bunch crossing (40 million per second)
- 160 billion protons/bunch
- 10-20 collisions/crossing

26/04/2016

Luminosity, L

- Determines the number of events
- Accelerators try to maximize L
- LHC $L_{\rm max} = 10^{34} {\rm cm}^{-2} {\rm s}^{-1}$

Relative beam sizes around IP1 (Atlas) in collision

 $N_{\text{event}} = L\sigma_{\text{event}}$

$$L = \frac{N_b^2 n_b f_{\rm rev} \gamma_r}{4\pi\epsilon_n \beta^*} F$$

- N_b = particles/bunch n_b = bunches/beam f_{rev} = revolution frequency
- γ_r = relativistic gamma factor

- ϵ_n = normalized transverse beam emittance
- β^* = beta star function
- F = geometric luminosity reduction factor

- Photographs exotic particles created by the *p*-*p* collision
- Weight: 7,000 tons
- 46 m long; 25 m diameter
- ~3,000 collaborators, >177 institutes, 38 countries
- Layers have specialized functions

ATLAS Detector Coordinates

Cartesian Coordinates

- Beam: *z* direction
- Transverse plane: x y

ATLAS Detector Coordinates

Cartesian Coordinates

- Beam: *z* direction
- Transverse plane: *x y*

Spherical Coordinates

- Azimuthal angle: ϕ
- Polar angle: θ

ATLAS Detector Coordinates

We transform θ into rapidity (γ) because differences in γ are Lorentz invariant under boosts along the z - axis.

$$y = \frac{1}{2} ln \frac{E + p_z c}{E - p_z c} \qquad \text{where:} \quad p_z = p \cos\theta$$

m = 0

Psuedo-rapidity (η) is the massless particle approximation of γ .

$$\eta = -ln \tan \frac{\theta}{2}$$

Magnet Systems

Their size, position and strength determined overall detector design.

- Solenoid = 2 T
- Barrel Toroid ~ 0.5 T
- End-cap Toroid $\sim 1 \text{ T}$

Their purpose is to curve the path of charged particles. Using the Lorentz force:

 $\vec{F} = q\vec{v}\times\vec{B}$

given circular motion:

 $F = \frac{mv^2}{r}$

relates transverse momentum (p_T) and radius of curvature (r):

 $p_{\rm T} = qBr$

Enclosed by the Solenoid

Performs: Tracking Vertex Identification

3 technologies used:

• Silicon pixels

•

- Silicon strips
- Straw tubes

Red track shows hypothetical charged particle of: $p_{\rm T}$ = 10 GeV and η =0.3

Calorimeters

- Provides particle energy measurements
- Electromagnetic: photons and electrons
- Hadronic: e.g. protons, neutrons

Muon Spectrometer

Particle/Object Identification

Charged particles leave tracks:

- Curve direction shows charge sign
- Curve radius ∞ transverse momentum ($p_{\rm T}$)

Undetected particles result in Missing Transverse Energy (MET or E_T^{miss}):

 $\vec{E}_{\rm T}^{\rm miss} = \vec{E}_{\rm Tx}^{\rm miss} + \vec{E}_{\rm Ty}^{\rm miss}$

Particle/Object Identification

Primary Vertex: Initial proton-proton collision

Many particles produced at the primary vertex travel travel some distance and decay at a secondary vertex.

Their transverse time of flight or decay time is:

$$\tau \equiv L_{xy} \frac{m}{p_{\rm T}}$$

Where L_{xy} is the transverse decay length.

A conical boundary around a track is defined:

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$$

Triggering and Data Acquisition

More data is generated than can be stored, triggers select the interesting data. 40 million bunch crossings per second

Level 1 trigger: rough selections every 2 µs

< 75 thousand bunch crossings per second

Level 2 trigger: analysis specific selections every 40 μs

~ 1,000 events per second

Event selection: detailed event analysis

~ 100 events per second stored on disk @ ~1.5 MB/event

Event Channel:

 $J/\psi \rightarrow \mu^+\mu^-$ and $W^{\pm} \rightarrow \mu^{\pm}v$

Analysis Goals:

Measure the ratio given by the cross section of associated prompt $J/\psi + W^{\pm}$ production divided by the cross section of inclusive W^{\pm} production.

$$R_{J/\psi} \equiv \frac{\sigma_{W+J/\psi}}{\sigma_W}$$

Event Channel:

 $J/\psi \rightarrow \mu^+\mu^-$ and $W^{\pm} \rightarrow \mu^{\pm}v$

Analysis Goals:

Measure the ratio given by the cross section of associated prompt $J/\psi + W^{\pm}$ production divided by the cross section of inclusive W^{\pm} production.

$$R_{J/\psi} \equiv \frac{\sigma_{W+J/\psi}}{\sigma_W} \equiv \frac{\frac{N_{W+J/\psi}}{\mathcal{T} \times \mathcal{L} \times \epsilon_W \times \mathcal{A}_W \times \epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}}{\frac{N_W}{\mathcal{T} \times \mathcal{L} \times \epsilon_W \times \mathcal{A}_W}}$$

Where:

N = number of events

T = trigger efficiency

 \mathcal{L} = luminosity

 ϵ = detector efficiency

 \mathcal{A} = detector acceptance

Event Channel:

 $J/\psi \rightarrow \mu^+\mu^-$ and $W^{\pm} \rightarrow \mu^{\pm}v$

Analysis Goals:

Measure the ratio given by the cross section of associated prompt $J/\psi + W^{\pm}$ production divided by the cross section of inclusive W^{\pm} production.

$$R_{J/\psi} \equiv \frac{\sigma_{W+J/\psi}}{\sigma_W} \equiv \frac{\frac{N_{W+J/\psi}}{\mathcal{T} \times \mathcal{L} \times \epsilon_W \times \mathcal{A}_W \times \epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}}{\frac{N_W}{\mathcal{T} \times \mathcal{L} \times \epsilon_W \times \mathcal{A}_W}} \equiv \frac{1}{N_W} [\frac{N_{W+J/\psi}}{\epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}]$$

Where:

N = number of events

T = trigger efficiency

 \mathcal{L} = luminosity

 ϵ = detector efficiency

 \mathcal{A} = detector acceptance

Additional Goals:

- Measure the ratio as a function of J/ψ^{PT}
- Determine the fraction of events from single parton scattering (SPS) vs double parton scattering (DPS).

<u>We need:</u> **1) Inclusive** W [±] sample **2) Associated** J/ψ + W [±] sample

W[±] Selections

$W^{\pm} \rightarrow \mu^{\pm} v$ Requirements

Fire trigger for:	isolated muon of $p_{\rm T}$ = 24 GeV OR muon	n of $p_{\rm T}$ = 36 GeV
High quality muon	detected both in tracker and muon syst	tem
Transverse momentum		p _T > 25 GeV
Pseudorapidity		η < 2.4
Distance from primary vertex in z		z _o < 1mm
Impact parameter significance		$ d_{\rm o} < 3\sigma_{\rm do}$
Track momentum isolation in cone of $\Delta R < 0.3$		< 0.05 p _T
Track energy isolation in cone of $\Delta R < 0.3$		< 0.05 p _T
Neutrino Require	ment	
Missing transverse	energy	E _t ^{miss} > 20 GeV
Reconstructed Ma	ass Requirement	
W transverse mass		<i>m</i> _T (<i>W</i>) > 40 GeV

Inclusive W[±] sample – Adjustments Applied

Backgrounds Subtracted

Modeled by processing MC in the same way as data:

- W-> ev
- W-> τν
- Z -> ee,μμ, *ττ*
- Single t
- Diboson (ZZ,WW,WZ)
- tt

MC corrections applied to better model the data

- Pileup Weight
- z Vertex Weight
- Trigger Weight
- Muon Efficiency Weight
- Muon *p*_T Smearing

Data driven estimation:

• QCD/multi-jet

Background Removal, Inclusive W[±] sample: Multi-jet

ABCD Method for multi-jet background determination

Multijet background is too computationally intensive for MC, so a data driven method is used.

Categories

A: $E_T^{miss} < 20 \text{ GeV}, m_T(W) < 40 \text{ GeV}$, isolated muon B: $E_T^{miss} < 20 \text{ GeV}, m_T(W) < 40 \text{ GeV}$, anti-isolated muon C: $E_T^{miss} > 20 \text{ GeV}, m_T(W) > 40 \text{ GeV}$, isolated muon (signal region) D: $E_T^{miss} > 20 \text{ GeV}, m_T(W) > 40 \text{ GeV}$, anti-isolated muon

Muon Isolation Criteria

P = Track isolation momentum in cone of $\Delta R < 0.3$ E = Calorimeter isolation energy in cone of $\Delta R < 0.3$

Method:

- 1. Subtract events in all other known MC modeled backgrounds from the data events in each region
- 2. (Events in A)/(Events in B) = muon isolation *fake factor*
- 3. fake factor x D = multi-jet background

Assumption is that this
ratio is constant:
D/B = C/A

	P < 0.05 <i>p</i> _T	P > 0.05 <i>p</i> _T
E < 0.05 <i>p</i> _T	isolated	
$E > 0.05 p_{T}$		anti-isolated

Inclusive W Sample

W Transverse Mass µ-

Our total model contains ~90% MC signal and ~10% backgrounds (MC backgrounds + ABCD method QCD)

Subtracting **background** events from **data** events gives (5.21285 ± 0.00135)×10⁷ events in the inclusive W sample

Inclusive W[±] Sample Uncertainty Estimation

$$\frac{N_{events} \text{ measured in Data}}{N_{events} \text{ predicted by Model}} = 0.9$$

Assuming our model of just the **backgrounds** is similarly off by the same factor:

This gives an estimated ~2% systematic uncertainty on the Inclusive W[±] yield

Total number of data events: 6.229×10^7 Total number of events given by model of signal MC +background MC +QCD: 6.919×10^7 Data – (MC backgrounds + QCD)* $0.9 = 5.31447 \times 10^7$

J/ψ Selections

Individual µ Requirements			
High quality muon			
Transverse momentum	$p_{\rm T}$ > 2.5 GeV for $ \eta $ > 1.3		
Transverse momentum	$p_{\rm T}$ > 3.5 GeV for $ \eta < 1.3$		
Pseudorapidity	η < 2.5		
Distance from primary vertex in z	z _o < 10 mm		
μ Pair Requirements			
μ Pair Requirements			
μ Pair Requirements Opposite charges			
 μ Pair Requirements Opposite charges At least one muon detected in both tracker and muon system with 	<i>р</i> _Т > 4 GeV		
μ Pair RequirementsOpposite chargesAt least one muon detected in both tracker and muon system withJ/ψ invariant mass	p _T > 4 GeV ∈(2.4, 3.8) GeV		
μ Pair RequirementsOpposite chargesAt least one muon detected in both tracker and muon system withJ/ψ invariant massJ/ψ transverse momentum	$p_{\rm T} > 4 {\rm GeV}$ \in (2.4, 3.8) GeV $p_{\rm T} > 8.5 {\rm GeV}$		

J/ψ Candidates (with associated W [±])

Next Steps:

- Identify prompt candidates (not from secondary decays e.g. *b*-hadrons)
- Correct for acceptance and efficiency
- Remove backgrounds

J/ψ (with associated W[±]) sample – Adjustments Applied

Backgrounds Estimated and Subtracted

- QCD/multi-jet Estimated using modified data driven method
- Pileup

Backgrounds Studied and not Observed:

• W-> $ev, \tau v$; Z -> $ee, \mu \mu, \tau \tau$; Single top; Diboson (ZZ,WW,WZ); $t\bar{t}$; $B_c^{\pm} \rightarrow J/\psi \ell^{\pm} v X$

J/ ψ candidates acceptance and efficiency corrections

Applied with weighting maps:

- Acceptance accounts for the unknown J/ψ spin polarization.
- Efficiency corrects the detector's ability to measure muons.

J/ψ Yield

A two-dimensional, unbinned, simultaneous, maximum likelihood fit in mass and lifetime was performed to separate out the prompt J/ ψ component.

Fit performance verified with independent, higher statistics data sample. Nominal fit parameters:

- Mass peak fixed
- Mass backgrounds 2nd O pol

Two rapidity (y) regions because of differing resolutions.

Di-muon Invariant Mass

Background Removal, Associated J/ ψ + W[±] : QCD/Multi-jet <u>Data driven ABCD method</u>

Region D prompt J/ ψ events = 25 ± 11

 J/ψ + W sample *fake factor* = A/B = 0.150 ± 0.015

of signal events in J/ ψ + W sample = 417 ± 28

QCD fraction = $D \times A/B \div signal = 0.8 + / - 0.4\%$

→ QCD background = 4±2 events

Background Removal, Associated J/ ψ + W[±] : B[±]_c decays

- The B_c^{\pm} meson decay can mimic the J/ ψ + W^{\pm} signature.
- The B_c^{\pm} has a short lifetime, so it can appear like a prompt signal.
- The invariant mass of the W $^{\pm}$ muon and the two J/ψ muons is calculated.

 $B_c^{\pm} \to J/\psi \ l^{\pm}\nu X$

- B_c^{\pm} mass = 6.277±0.006 GeV.
- All measured masses of M(3μ) alone are > 6.3 GeV,

No backgrounds are observed.

Background Removal, Associated J/ ψ + W[±] : MC backgrounds

 $W \rightarrow ev$; $W \rightarrow \tau v$; $Z \rightarrow ee$; $Z \rightarrow \mu \mu$; $Z \rightarrow \tau \tau$; Diboson ; single top; ft

• The MC background samples were processed identically to the data, plot shows the number of prompt $J/\psi+W$ events present is consistent with zero.

Background Removal, Associated J/ ψ + W[±] : Pileup

(colors show different J/ψ^{pT} bins in the range 8 – 110. GeV)

Pileup means that the J/ ψ and W[±] particles were produced in two different *proton-proton* collisions.

Begin with $J/\psi \rightarrow \mu\mu$ cross section measured by ATLAS <u>arxiv.org/abs/1512.03657v1</u>

But we must extrapolate their measurements to $J/\psi^{pT} = 150 \text{ GeV}$ and $J/\psi^{|y|} = 2.1$.

Background Removal, Associated J/ ψ + W[±]: Pileup

$J/\Psi \rightarrow \mu\mu$ Cross Section Extrapolations

Background Removal, Associated J/ψ + W[±]: Pileup

MC strategy used to determine average number of extra pileup vertices $\approx 2.3 \pm 0.2$

26/04/2016

D. Bertsche 43

Associated J/ ψ + W [±] : Pileup Background

Calculated in 2 y and 6 p_T bins:

 $J/\psi \rightarrow \mu\mu$ cross section measurement

- × average number of extra pileup vertices (2.3)
- + inclusive cross section $(0.73 \times 10^{-8} \text{ b})$
- × average inclusive J/ψ <acceptance x efficiency>
- × inclusive W \pm yield (5.21×10⁷)

→ 7.9±0.3 pileup events

Associated J/ ψ + W [±] : Systematic Uncertainty

Mass Fit

Estimated by taking the divergence between the cross-section ratio calculated with a nominal fit and an alternate fit.

- Nominal: single Gaussian for signal, 2nd order polynomial for the backgrounds
- > Alternative 1: Introduce a $\psi(2S)$ mass peak into the fit model
- > Alternative 2: let the J/ ψ mass peak float
- Alternative 3: exponential background functions

Results: 9.5% and 3.9% (for $|y_{J/\psi}| < 1$, $1 < |y_{J/\psi}| < 2.1$)

<u>Pileup</u>

Events due to pileup determined to be 7.89 +/- 0.25. We calculate the result subtracting the max(min) values and then take the difference from the nominal result as a systematic. Results: 0.1% and 0.3% (for $|y_{J/\psi}| < 1$, $1 < |y_{J/\psi}| < 2.1$)

Associated J/ ψ + W [±] : Systematic Uncertainty

<u>J/ψ muon efficiency</u>

Randomly sample J/ ψ muon efficiency from a Gaussian distribution about the nominal value. Repeat 100 times, the deviation between the mean of this result and the nominal result is taken as a systematic uncertainty.

Results: 1.2% and 0.9% (for $|y_{J/\psi}| < 1$, $1 < |y_{J/\psi}| < 2.1$)

 $J/\psi \mu_pt$ vs mu_eta passing all cuts

Associated J/ ψ + W [±] : Systematic Uncertainty

J/ψ Acceptance

The maximum difference in alternate results compared to the nominal is used as a systematic.

Results: 30.0% and 25.4% (for $|y_{J/\psi}| < 1$, $1 < |y_{J/\psi}| < 2.1$)

 $J/\psi \rightarrow \mu^+\mu^-$ angular distribution:

 $\frac{d^2N}{d\cos\theta^* d\phi^*} \propto 1 + \lambda_\theta \cos\theta^{*2} + \lambda_\phi \sin\theta^{*2} \cos 2\phi^* + \lambda_{\theta\phi} \sin 2\theta^* \cos\phi^*$

- 1. Isotropic (nominal): $\lambda_{\theta} = \lambda_{\phi} = \lambda_{\theta\phi} = 0$
- 2. Longitudinal: $\lambda_{\theta} = -1$, $\lambda_{\phi} = \lambda_{\theta\phi} = 0$
- 3. Transverse-0: $\lambda_{\theta} = +1$, $\lambda_{\varphi} = \lambda_{\theta\varphi} = 0$
- 4. Transverse-M: $\lambda_{\theta} = +1$, $\lambda_{\phi} = -1$, $\lambda_{\theta\phi} = 0$
- 5. Transverse-P: $\lambda_{\theta} = \lambda_{\phi} = +1$, $\lambda_{\theta\phi} = 0$

Systematic Uncertainty Summary

Source of Uncertainty	Percent Contribution		
	$ y_{J/\psi} < 1$	$1 < \left y_{J/\psi}\right < 2.1$	
J/ψ mass fit	9.5%	3.9%	
$\mu_{J/\psi}$ efficiency	1.2%	0.9%	
Pileup	0.1%	0.3%	
Inclusive W yield	1.9%	1.9%	
J/ψ spin-alignment	30.0%	25.4%	

Associated J/ ψ + W[±] : DPS Contribution Estimation

Assume:

1) Two uncorrelated hard scatters

2) σ_{eff} is process-independent

Then: probability of both J/ ψ and W[±] = $P_{J/q}^{ij}$

$$_{\psi|W} = rac{\sigma_{J/\psi}}{\sigma_{\mathrm{eff}}}$$

Calculated in 2 y and 6 p_T bins:

 $J/\psi \rightarrow \mu\mu$ cross section measurement

- + σ_{eff} (15 mb, from W+2 jet ATLAS measurement)
- + bin size in $|y| \times p_T$ space
- × average inclusive J/ ψ <acceptance x efficiency>
- × inclusive W \pm yield (5.21×10⁷)

→ 34.3±5.7 DPS events

SPS and DPS contribution

 $\Delta \phi(J/\psi,W)$ for prompt J/ ψ +W events, showing the DPS contribution in yellow.

26/04/2016

Differential Results

The inclusive differential cross section ratio for |y| < 2.1 is shown in 6 $p_T^{J/\psi}$ bins.

26/04/2016

 ± 1.38

 ± 0.87

Comparison with theory and 7 TeV

measurement

	Theory, Color Octet	Measurement
		\pm stat \pm syst \pm pol
$7 { m TeV}$	$(22.68 \pm 3.36) \times 10^{-8}$	$(328 \pm 134 \pm 92^{+172}_{-105}) \times 10^{-8}$
8 TeV	$(81.282 \pm 3.251) \times 10^{-8}$	$(736 \pm 96 \pm 61 \pm 163) \times 10^{-8}$
$8 { m TeV}^{\dagger}$	$(94.408 \pm 3.776) \times 10^{-8}$	

DPS-Subtracted Cross-Section Ratio Numbers ⁺Alternate polarization set

	7TeV/8TeV Results Ratio
Theory (NLO CO set 1)	0.279 ± 0.043
(NLO CO set 2)	0.240 ± 0.037
Measurement	0.446 ± 0.191

Theory consistently under-predicts the measurements.

Conclusions

- A measurement of the cross section ratio $R_{J/\psi} \equiv \frac{\sigma_{W+J/\psi}}{\sigma_W}$ is presented.
- Currently only theory predictions for single parton scattering in the color octet model are available, these results can be compared to new theory predictions as they develop.
- Theory numbers for both 7 TeV and 8 TeV underpredict measurements by the same amount within statistical errors.
- An estimated 8.2 ± 1.9 % of signal events are due to double parton scattering.

References 1/4

- S Braibant, G Giacomelli, and M Spurio. Particles and Fundamental Interactions. Springer, Italy, 1st edition, 2009. 1, 1.1.4
- Sheldon L. Glashow. Partial-symmetries of weak interactions, 1961. 1 Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., 19:1264–1266, Nov 1967.
- G. 't Hooft and M. Veltman. Regularization and renormalization of gauge fields. Nuclear Physics B, 44(1):189 213, 1972. 1
- G Caughlan, J Dodd, and B Gripaios. The Ideas of Particle Physics. Cambridge University Press, Cambridge, UK, 3rd edition, 2006. 1, 1.1.4, 1.2, 1.3, 1.4, 5
- V. Barger and R. Phillips. Collider Physics. Frontiers in physics. Addison-Wesley Publishing Company, 1997. 1.1, 1.1.3
- O. Boyarkin. Advanced Particle Physics Volume I: Particles, Fields, and Quantum Electrodynamics. Advanced Particle Physics. CRC Press, 2011. 1.1.3
- W.N. Cottingham and D.A. Greenwood. An Introduction to the Standard Model of Particle Physics. Cambridge University Press, 2007. 1.1.3
- K. A. Olive et al. Review of Particle Physics. Chin. Phys., C38:090001, 2014. 1.2, 1.3, D.1
- J. Soto N. Brambilla, A. Pineda and A. Vairo. Potential NRQCD: An Effective theory for heavy quarkonium. Nucl. Phys., Science(B566), 2000. 1.2
- J. E. Augustin et al. Discovery of a Narrow Resonance in e+ e- Annihilation. Phys. Rev. Lett., 33:1406–1408, 1974. [Adv. Exp. Phys.5,141(1976)]. 1.2
- J. J. Aubert et al. Experimental Observation of a Heavy Particle J. Phys. Rev. Lett., 33:1404–1406, 1974. 1.2
- Makoto Kobayashi and Toshihide Maskawa. CP Violation in the Renormalizable Theory of Weak Interaction. Prog. Theor. Phys., 49:652–657, 1973. 1.2
- Nicola Cabibbo. Unitary Symmetry and Leptonic Decays. Phys. Rev. Lett., 10:531–533, Jun 1963. 1.2
- S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, H. D. Snyder, J. K. Yoh, J. A. Appel, B. C. Brown, C. N. Brown, W. R. Innes, K. Ueno, T. Yamanouchi, A. S. Ito, H. Jo⁻stlein, D. M. Kaplan, and R. D. Kephart. Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus Collisions. Phys. Rev. Lett., 39:252–255, Aug 1977. 1.2
- F. et. al. Abe. Observation of Top Quark Production in pp Collisions with the Collider Detector at Fermilab. Phys. Rev. Lett., 74:2626–2631, Apr 1995. 1.2
- Abbott B. et. al. Abachi, S. Observation of the Top Quark. Phys. Rev. Lett., 74:2632–2637, Apr 1995. 1.2
- Georges Aad et al. Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett., B716:1–29, 2012. 1.4
- Serguei Chatrchyan et al. Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett., B716:30–61, 2012. 1.4
- The CERN Large Hadron Collider: Accelerator and Experiments vol. 1. JINST, 3 S08001, Aug 2008. 2.1, 2.2.1, 3
- ATLAS IBL Community. Insertable B-Layer Technical Design Report. volume 013, 2010. 2.2.3

References 2/4

- B Resende. Muon identification algorithms in ATLAS. Technical Report ATL- PHYS-PROC-2009-113, CERN, Geneva, Sep 2009. 3.2
- Georges Aad et al. Measurement of the muon reconstruction performance of the ATLAS detector using 2011 and 2012 LHC proton-proton collision data. Eur. Phys. J., C74(11):3130, 2014. 3.2
- Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The Anti-k(t) jet clustering algorithm. JHEP, 04:063, 2008. 3.4
- B. A. Kniehl et al. Associated production of heavy quarkonia and electroweak bosons at present and future colliders. Phys. Rev. D, 66:114002, 2012. 4.1
- N. Brambilla et al. Heavy quarkonium physics. 2004. 4.1.1, 4.1.2
- N. Brambilla et al. Heavy quarkonium: progress, puzzles, and opportunities. Eur.
- Phys. J., C71:1534, 2011. 4.1.1, 4.1.2
 J. P. Lansberg. On the mechanisms of heavy-guarkonium hadroproduction. 4.1.1,
- Mathias Butenschoen and Bernd A. Kniehl. World data of J/ψ production consolidate nonrelativistic QCD factorization at next-to-leading order. Phys. Rev. D, 84:051501, Sep 2011. 4.1.1, 4.1.2
- Mathias Butenschoen and Bernd A. Kniehl. Next-to-leading-order tests of NRQCD factorization with J/ψ yield and polarization. Mod. Phys. Lett., A28:1350027, 2013. 4.1.1, 4.1.2
- S. P. Baranov, A. V. Lipatov, and N. P. Zotov. Prompt J/ψ production at the LHC: New evidence for the kT factorization. Phys. Rev. D, 85:014034, Jan 2012. 4.1.1, Yan-Qing Ma, Kai Wang, and Kuang-Ta Chao. A complete NLO calculation of the J/ψ and ψ' production at hadron colliders. Phys. Rev., D84:114001, 2011. 4.1.1, John C. Collins, Davison E. Soper, and George Sterman. Heavy particle production in high-energy hadron collisions. Nuclear Physics B, 263(1):37 60, 1986. 4.1.1
- W.E. Caswell and G.P. Lepage. Effective lagrangians for bound state problems in qed, qcd, and other field theories. Physics Letters B, 167(4):437 442, 1986. Geoffrey T. Bodwin, Eric Braaten, and G. Peter Lepage. Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Phys. Rev., D51:1125–1171, 1995. [Erratum: Phys. Rev.D55,5853(1997)]. 4.1.1, 4.1.2
- Peter L. Cho and Adam K. Leibovich. Color octet quarkonia production. Phys. Rev., D53:150–162, 1996. 4.1.1
- Peter L. Cho and Adam K. Leibovich. Color octet quarkonia production. 2. Phys. Rev., D53:6203–6217, 1996. 4.1.1
- J. F. Amundson, Oscar J. P. Eboli, E. M. Gregores, and F. Halzen. Quantitative tests of color evaporation: Charmonium production. Phys. Lett., B390:323–328, 1997. 4.1.1
- L. Gang, S. Mao, Z. Ren-You, and M. Wen-Gan. QCD corrections to J/ψ production in association with a W boson at the LHC. Phys. Rev. D, 83:014001, Jan. 2011.
 4.1.2

References 3/4

- Bernd A. Kniehl, Caesar P. Palisoc, and Lennart Zwirner. Associated production of heavy quarkonia and electroweak bosons at present and future colliders. Phys. Rev., D66:114002, 2002. 4.1.2
- Gang Li, Mao Song, Ren-You Zhang, and Wen-Gan Ma. QCD corrections to J/ψ production in association with a W-boson at the LHC. Phys. Rev., D83:014001, 2011. 4.1.2
- J. P. Lansberg and C. Lorce. Reassessing the importance of the colour-singlet contributions to direct J/ψ + W production at the LHC and the Tevatron. Phys. Lett., B726:218–222, 2013. [Erratum: Phys. Lett.B738,529(2014)]. 4.1.2, 4.1.2
- Georges Aad et al. Measurement of the production cross section of prompt J/ ψ mesons in association with a W ± boson in pp collisions at vs = 7 TeV with the ATLAS detector. JHEP, 04:172, 2014. 4.1.3, 4.7, 4.5.3, 4.10, B.1
- Muriel Pivk and Francois R. Le Diberder. SPlot: A Statistical tool to unfold data distributions. Nucl.Instrum.Meth., A555:356–369, 2005. 4.2, 4.4.6
- Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008. 4.3
- Michelangelo L. Mangano, Mauro Moretti, Fulvio Piccinini, Roberto Pittau, and Antonio D. Polosa. ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP, 07:001, 2003. 4.3
- Stefano Frixione and Bryan R. Webber. Matching NLO QCD computations and parton shower simulations. JHEP, 06:029, 2002. 4.3
- Borut Paul Kersevan and Elzbieta Richter-Was. The Monte Carlo event generator AcerMC versions 2.0 to 3.8 with interfaces to PYTHIA 6.4, HERWIG 6.5 and ARIADNE 4.1. Comput. Phys. Commun., 184:919–985, 2013. 4.3
- Stefano Moretti. HERWIG: An Event generator for MSSM processes. In High energy physics phenomenology. Proceedings, 7th Workshop, WHEPP-7, Allahabad, India, January 4-15, 2002, 2002. [Submitted to: Pramana(2002)]. 4.3
- First tuning of HERWIG/JIMMY to ATLAS data. 2010. 4.3 Gunter Zech. Comparing statistical data to Monte Carlo simulation: Parameter fitting and unfolding. 1995. 4.3.1
- W. Verkerke and D. Kirkby. The RooFit toolkit for data modeling. ArXiv Physics e-prints, June 2003. 4.4.6
- Nicola Orlando. Muon reconstruction efficiency measurement in the ATLAS experiment. EPJ Web Conf., 28:12040, 2012. 4.4.8
- Georges Aad et al. Observation and measurements of the production of prompt and non-prompt J/ ψ mesons in association with a Z boson in pp collisions at vs = 8 TeV with the ATLAS detector. Eur.Phys.J., C75(5):229, 2015. 4.5.3, B.4, B.5

References 4/4

- ATLAS Collaboration. Measurement of hard double-parton interactions in $W(\rightarrow v)$ + 2jet events at vs = 7 TeV with the ATLAS detector. New Journal of Physics, 15(3):033038, 2013. 4.6
- Mathias Butenschoen and Bernd A. Kniehl. J/ψ production in NRQCD: A global analysis of yield and polarization. Nucl.Phys.Proc.Suppl., 222-224:151–161, 2012.
 4.17, 4.8.5
- Kuang-Ta Chao, Yan-Qing Ma, Hua-Sheng Shao, Kai Wang, and Yu-Jie Zhang. J/ψ Polarization at Hadron Colliders in Nonrelativistic QCD. Phys.Rev.Lett., 108:242004, 2012. 4.17, 4.8.5, 4.10
- [58] Georges Aad et al. Measurement of the differential cross-sections of prompt and non-prompt production of J/ ψ and ψ (2S) in pp collisions at v_s = 7 and 8 TeV with the ATLAS detector. 2015. 4.8.5
- [59] Mao Song, Gang Li, Wen-Gan Ma, Ren-You Zhang, Lei Guo, et al. J/ψ Production Associated with a W-Boson at the 7 TeV Large Hadron Collider. Chin. Phys. Lett., 30:091201, 2013. 4.8.5
- [60] M. Bicer et al. First Look at the Physics Case of TLEP. JHEP, 01:164, 2014. 5
- <u>http://www.particleadventure.org</u>
- <u>http://www.atlas.ch</u>
- Electromagnetic Showers and Shower Detectors, V. Kaushik , Aug 9th 2002
- http://hyperphysics.phy-astr.gsu.edu/hbase/forces/funfor.html
- Tales of the young Top Quark: Selected recent experimental results from the LHC & Tevatron; Lister, Alison; 2015

Backup Information

٠

Particle Physics - What is everything made of and what holds it together?

460 - 370 B.C. Democritus	All matter is made of indivisible particles called atoms
1773 - 1829 Thomas Young	Wave theory of light
1874 George Stoney	Theorizes the electron, estimates its mass
1895 Wilhelm Röntgen	Discovers x rays
1898 Joseph Thompson	Measures the electron , develops "plum-pudding" model of the atom
1919 Ernest Rutherford	First evidence for a proton
1921 James Chadwick and E.S. Bieler	Strong force holds the nucleus together.
1923 Arthur Compton	Discovers the quantum (particle) nature of x rays, photons are particles
1924 Louis de Broglie	Proposes that matter has wave properties
1930 Wolfgang Pauli	Neutrino explains the continuous electron spectrum for beta decay
1931 Paul Dirac	Proposes positron, first antiparticle
1937 Anderson and Neddermeyer	Muon discovered in cosmic rays

• 1953

- --- Beginning of a proliferation of particle discoveries ---
- 1968-69 James Bjorken, Richard Feynman
- 1974 Samuel Ting, Burton Richter
- 1976 Martin Perl
- 1977 Leon Lederman
- 1983 Carlo Rubbia, Simon Van der Meer
- 1995 CDF and D0 experiments
- 2012 ATLAS and CMS experiments

Propose quark model based on SLAC data Separately discover J/ψ particle on the same day τ lepton unexpectedly discovered at SLAC. Bottom quark discovered at Fermilab W[±] and Z⁰ bosons discovered at CERN Top quark discovered at Fermilab Higgs boson discovered at CERN

Backup: SM

26/04/2016

$J/\psi(1S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level		
$\overline{\Gamma_1}$	hadrons	(87.7 ±0.5)%			
Γ ₂	$virtual\gamma o hadrons$	(13.50 \pm 0.30) %			
Γ ₃	ggg	(64.1 \pm 1.0) %			
Г4	$\gamma g g$	(8.8 \pm 0.5) %			
Γ ₅	e ⁺ e ⁻	(5.94 ± 0.06)%			
Г ₆	$\mu^+ \mu^-$	(5.93 ± 0.06)%			
Decays involving hadronic resonances					
Γ ₇	$ ho\pi$	(1.69 ± 0.15)%	S=2.4		
Г ₈	$ ho^{0}\pi^{0}$	(5.6 \pm 0.7) $ imes$	10 ⁻³		
Г9	a ₂ (1320)ρ	(1.09 ± 0.22)%			
Γ ₁₀	$\omega \pi^+ \pi^+ \pi^- \pi^-$	(8.5 \pm 3.4) $ imes$	10-3		

 $\Gamma_{11} \quad \omega \pi^+ \pi^- \pi^0$

 $\Gamma_{12} \quad \omega \pi^+ \pi^-$

S=1.1

 $(4.0 \pm 0.7) \times 10^{-3}$

(8.6 ± 0.7) $\times 10^{-3}$

Backup: Theory

W⁺ DECAY MODES

 W^- modes are charge conjugates of the modes below.

	Mode	F	raction (Γ_i/Γ)		Confidence	level
Г1	$\ell^+ u$	[a]	$(10.80\pm\ 0.09)$	%		
Γ2	$e^+ \nu$		(10.75± 0.13)	%		
Г3	$\mu^+ \nu$		(10.57± 0.15)	%		
Г4	$ au^+ u$		(11.25 ± 0.20)	%		
Γ ₅	hadrons		(67.60± 0.27)	%		
Г ₆	$\pi^+\gamma$	<	< 8	$\times 10^{\circ}$	—5	95%
Γ ₇	$D_s^+\gamma$	<	< 1.3	$\times 10^{\circ}$	-3	95%
Г ₈	сX		(33.4 \pm 2.6)	%		
Г ₉	cs		$(31 \begin{array}{c} +13 \\ -11 \end{array})$	%		
Γ ₁₀	invisible	[<i>b</i>]	(1.4 \pm 2.9)	%		

[a] ℓ indicates each type of lepton (e, μ , and τ), not sum over them.

[b] This represents the width for the decay of the W boson into a charged particle with momentum below detectability, p < 200 MeV.

Particle Level

26/04/2016

Particle Level

26/04/2016

Electromagnetic Shower

Fundamental Forces

hyperphysics.phy-astr.gsu.edu

Beta Star (β^*) and F functions for L

- Beta star is a function of the magnet settings at a given point
- F is the geometric luminosity reduction factor due to the interaction point crossing angle

$$F = \left(1 + \left(\frac{\theta_c \sigma_z}{2\sigma^*}\right)^2\right)^{-\frac{1}{2}}$$

 $\Theta c = crossing angle$

 $\sigma z = RMS$ bunch length

 $\sigma^* = RMS$ bunch width

Emittance (ϵ) for L

- The "area in phase space" occupied by the beam = $\pi \times \epsilon$
- Invariant around the beam
- For a Gaussian distribution ε _{rms} contains 39% of the beam, where:

$$\epsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

Muon Definition

• The muon definition may be different between the uncorrected and corrected files.

The W muon type information from the uncorrected flatNtupler

- Must be a STACO muon
 - > mu_type == 0
- Must be combined muon
 - mu_iscombined == TRUE
- Must pass muon quality cuts
 - mu_passes_mcp == TRUE

The W muon type information from the uncorrected flatNtupler

- Must be a MuidCo muon
 - m.author() = 12
- Must pass muon quality cuts
 - m.nPixHits() + m.nPixelDeadSensors() >= 0
 - m.nPixHoles() + m.nSCTHoles() < 3</p>
 - int nTRTtotal = m.nTRTHits() + m.nTRTOutliers();
 - if (fabs(m.eta()) >= 0.1 && fabs(m.eta()) <= 1.9){
 - const bool cut = (nTRTtotal > 5 && (double)m.nTRTOutliers()/(double)nTRTtotal > 0.9);

}

ATLAS Toroid Magnet

2.2

Detector Component	η coverage	Required Resolution			
Inner detector	± 2.5	$rac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}} = 0.05\% p_{\mathrm{T}} \oplus 1\%$			
EM calorimetry	± 3.2	$rac{\sigma_E}{E} = rac{10\%}{\sqrt{E}} \oplus 0.7\%$			
Hadronic calorimetry (jets)					
barrel and end-cap	± 3.2	$rac{\sigma_E}{E} = rac{50\%}{\sqrt{E}} \oplus 3\%$			
forward	$3.1 < \eta < 4.9$	$rac{\sigma_E}{E} = rac{100\%}{\sqrt{E}} \oplus 10\%$			
Muon spectrometer	± 2.7	$\frac{\sigma_{p_{\mathrm{T}}}}{p_{\mathrm{T}}} = 10\%$ at $p_{\mathrm{T}} = 1 \mathrm{TeV}$			

What is a Jet?

- Collimated bunches of stable hadrons, originating from partons (quarks & gluons) after fragmentation and hadronization
- Jet Finding is the approximate attempt to reverse-engineer the quantum mechanical processes of fragmentation and hadronization
 - not a unique procedure ->
 several different approaches
- Jets are the observable objects to relate experimental **observations** to theory **predictions** formulated in terms of quarks and gluons

Philipp Schieferdecker (KIT) 2009

Anti-k_T Algorithm

- Despite being a IRC-safe sequential clustering algorithm: produces cirular cone-shaped jets!
- Many similar features and performance (expected, under study) as iterative cone, without the assoc. short-commings
- Shown to be particularly insensitive to UE & PU
 - ★ "back-reaction": net transverse momentum change of 200GeV leading jets in QCD dijet sample when adding high-lumi PU to the event

Philipp Schieferdecker (KIT) 2009

Momentum Measurement

orders of magnitude

- $P_{\perp} = 1 GeV$ B = 2T R = 1.67 m
- $P_{\perp} = 10 \, GeV \quad B = 2 \, T \quad R = 16.7 \, m$

the sagitta \boldsymbol{s}

assume a track length of 1 m

$$\begin{array}{ll} P_{\perp} = 1 GeV & s = 7.4 \ cm \\ P_{\perp} = 10 GeV & s = 0.74 \ cm \end{array}$$

An Introduction to Charged Particles Tracking – Francesco Ragusa

Backup: Samples Used Data set used: data12_8TeV.periodAllYear.physics_Muons.PhysCont.AOD.pro14_v01

				x-sec	
MCu	Sed: Sample	Full AOD Name	DSID	[pb]	k-factor
<u></u>	W e,nu 0_jet	mc12_8TeV.107680.AlpgenJimmy_AUET2CTEQ6L1_WenuNp0.merge.AOD.e1571_s1499_s1504_r3658_r3549	107680	8037.8	1.1760
	W e,nu 1_jet	mc12_8TeV.107681.AlpgenJimmy_AUET2CTEQ6L1_WenuNp1.merge.AOD.e1571_s1499_s1504_r3658_r3549	107681	1579.5	1.1760
	W e,nu 2_jet	mc12_8TeV.107682.AlpgenJimmy_AUET2CTEQ6L1_WenuNp2.merge.AOD.e1571_s1499_s1504_r3658_r3549	107682	477.31	1.1760
	W e,nu 3_jet	mc12_8TeV.107683.AlpgenJimmy_AUET2CTEQ6L1_WenuNp3.merge.AOD.e1571_s1499_s1504_r3658_r3549	107683	133.89	1.1760
	W e,nu 4_jet	mc12_8TeV.107684.AlpgenJimmy_AUET2CTEQ6L1_WenuNp4.merge.AOD.e1571_s1499_s1504_r3658_r3549	107684	35.614	1.1760
	W e,nu 5_jet	mc12_8TeV.107685.AlpgenJimmy_AUET2CTEQ6L1_WenuNp5.merge.AOD.e1571_s1499_s1504_r3658_r3549	107685	10.545	1.1760
	W mu,nu 0_jet	mc12_8TeV.107690.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp0.merge.AOD.e1571_s1499_s1504_r3658_r3549	107690	8040.9	1.1760
	W mu,nu 1_jet	mc12_8TeV.107691.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp1.merge.AOD.e1571_s1499_s1504_r3658_r3549	107691	1581	1.1760
	W mu,nu 2_jet	mc12_8TeV.107692.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp2.merge.AOD.e1571_s1499_s1504_r3658_r3549	107692	477.53	1.1760
	W mu,nu 3_jet	mc12_8TeV.107693.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp3.merge.AOD.e1571_s1499_s1504_r3658_r3549	107693	133.83	1.1760
	W mu,nu 4_jet	mc12_8TeV.107694.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp4.merge.AOD.e1571_s1499_s1504_r3658_r3549	107694	35.579	1.1760
	W mu,nu 5_jet	mc12_8TeV.107695.AlpgenJimmy_AUET2CTEQ6L1_WmunuNp5.merge.AOD.e1218_s1469_s1470_r3542_r3549	107695	10.561	1.1760
	W tau,nu 0_jet	mc12_8TeV.107700.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp0.merge.AOD.e1218_s1469_s1470_r3753_r3549	107700	8036.2	1.1760
	W tau,nu 1_jet	mc12_8TeV.107701.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp1.merge.AOD.e1218_s1469_s1470_r3605_r3549	107701	1579.5	1.1760
	W tau,nu 2_jet	mc12_8TeV.107702.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp2.merge.AOD.e1218_s1469_s1470_r3753_r3549	107702	477.5	1.1760
	W tau,nu 3_jet	mc12_8TeV.107703.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp3.merge.AOD.e1218_s1469_s1470_r3753_r3549	107703	133.78	1.1760
	W tau,nu 4_jet	mc12_8TeV.107704.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp4.merge.AOD.e1218_s1469_s1470_r3605_r3549	107704	35.593	1.1760
	W tau,nu 5_jet	mc12_8TeV.107705.AlpgenJimmy_AUET2CTEQ6L1_WtaunuNp5.merge.AOD.e1571_s1499_s1504_r3658_r3549	107705	10.534	1.1760
	Z e,e 0_jet	mc12_8TeV.107650.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp0.merge.AOD.e1571_s1499_s1504_r3658_r3549	107650) 711.76	1.2290
	Ze,e 1_jet	mc12_8TeV.107651.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp1.merge.AOD.e1571_s1499_s1504_r3658_r3549	107651	155.2	1.2290
	Ze,e 2_jet	mc12_8TeV.107652.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp2.merge.AOD.e1218_s1469_s1470_r3542_r3549	107652	48.739	1.2290
	Ze,e 3_jet	mc12_8TeV.107653.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp3.merge.AOD.e1571_s1499_s1504_r3658_r3549	107653	14.222	1.2290
	Ze,e 4_jet	mc12_8TeV.107654.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp4.merge.AOD.e1571_s1499_s1504_r3658_r3549	107654	3.7471	1.2290
	Z e,e 5_jet	mc12_8TeV.107655.AlpgenJimmy_AUET2CTEQ6L1_ZeeNp5.merge.AOD.e1571_s1499_s1504_r3658_r3549	107655	1.0942	1.2290
	Z mu,mu 0 jet	mc12 8TeV.107660.AlpgenJimmy AUET2CTEQ6L1 ZmumuNp0.merge.AOD.e1571 s1499 s1504 r3658 r3549	107660) 712.06	1.2290
	Z mu,mu 1 jet	mc12 8TeV.107661.AlpgenJimmy AUET2CTEQ6L1 ZmumuNp1.merge.AOD.e1218 s1469 s1470 r3542 r3549	107661	154.78	1.2290
	Z mu,mu 2 jet	mc12 8TeV.107662.AlpgenJimmy AUET2CTEQ6L1 ZmumuNp2.merge.AOD.e1571 s1499 s1504 r3658 r3549	107662	48.884	1.2290
	Z mu,mu 3 jet	mc12 8TeV. 107663. AlpgenJimmy AUET2CTEQ6L1 ZmumuNp3.merge. AOD.e1571 s1499 s1504 r3658 r3549	107663	14.496	1.2290
	Z mu,mu 4 jet	mc12 8TeV.107664.AlpgenJimmy AUET2CTEQ6L1 ZmumuNp4.merge.AOD.e1571 s1499 s1504 r3658 r3549	107664	3.8024	1.2290
	Z mu,mu 5_jet	mc12_8TeV.107665.AlpgenJimmy_AUET2CTEQ6L1_ZmumuNp5.merge.AOD.e1571_s1499_s1504_r3658_r3549	107665	1.1094	1.2290
	Z tau.tau 0 iet	mc12 8TeV.107670.AlogenJimmy AUET2CTEO6L1 ZtautauNo0.merge.AOD.e1571 s1499 s1504 r3658 r3549	107670) 711.89	1.2290
	Z tau.tau 1 iet	mc12_8TeV, 107671, AlogenJimmy_AUET2CTEQ6L1_ZtautauNp1, merge, AOD, e1571_s1499_s1504_r3658_r3549	107671	155.09	1.2290
	Z tau,tau 2 jet	mc12_8TeV.107672.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp2.merge.AOD.e1571_s1499_s1504_r3658_r3549	107672	48.805	1.2290
	Z tau,tau 3 jet	mc12_8TeV.107673.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp3.merge.AOD.e1571_s1499_s1504_r3658_r3549	107673	14.14	1.2290
	Z tautau 4 jet	mc12_8TeV_107674_AlogenJimmy_AUET2CTEO61_1_ZtautauNp4_merge_AOD_e1571_s1499_s1504_r3658_r3549	107674	3.7711	1,2290
	Z tau,tau 5_jet	mc12_8TeV.107675.AlpgenJimmy_AUET2CTEQ6L1_ZtautauNp5.merge.AOD.e1571_s1499_s1504_r3658_r3549	107675	5 1.1122	1.2290
MC normalized to data	Ttbar	mc12_8TeV.105200.McAtNloJimmy_CT10_ttbar_LeptonFilter.merge.AOD.e1513_s1499_s1504_r3658_r3549	105200) 112.94	1.2158
	sTop e	mc12_8TeV.117360.AcerMCPythia_AUET2BCTEQ6L1_singletop_tchan_e.merge.AOD.e1195_s1469_s1470_r3542_r3549	117360	8.5878	1.1037
	sTop mu	mc12 8TeV.117361.AcerMCPythia AUET2BCTEQ6L1 singletop tchan mu.merge.AOD.e1346 s1499 s1504 r3658 r3549	117361	8.5889	1.1035
	sTop tau	mc12_8TeV.117362.AcerMCPythia_AUET2BCTEQ6L1_singletop_tchan_tau.merge.AOD.e1195_s1469_s1470_r3542_r3549	117362	8.581	1.1045
	ww	mc12_8TeV.105985.Herwig_AUET2CTEQ6L1_WW.merge.AOD.e1576_s1499_s1504_r3658_r3549	105985	5 12.416	1.6833
	ZZ	mc12 8TeV.105986.Herwig AUET2CTEQ6L1 ZZ.merge.AOD.e1576 s1499 s1504 r3658 r3549	105986	0.99081	1.5496
	WZ	mc12_8TeV.105987.Herwig_AUET2CTEQ6L1_WZ.merge.AOD.e1576_s1499_s1504_r3658_r3549	105987	3.6706	1.9011

Backup: Samples Used

Sample	name tag
W e,nu 0_jet	147025.AlpgenPythia_Auto_P2011C_WenuNp0
	117680.AlpgenPythia_P2011C_WenuNp0
W e,nu 1_jet	147026.AlpgenPythia_Auto_P2011C_WenuNp1
	117681.AlpgenPythia_P2011C_WenuNp1
W e,nu 2_jet	147027.AlpgenPythia_Auto_P2011C_WenuNp2
	117682.AlpgenPythia_P2011C_WenuNp2
W e,nu 3_jet	147028.AlpgenPythia_Auto_P2011C_WenuNp3
	117683.AlpgenPythia_P2011C_WenuNp3
W e,nu 4_jet	147029.AlpgenPythia_Auto_P2011C_WenuNp4
	117684.AlpgenPythia_P2011C_WenuNp4
W e,nu 5_jet	147030.AlpgenPythia_Auto_P2011C_WenuNp5incl
	117685.AlpgenPythia_P2011C_WenuNp5
W mu,nu 0_jet	147033.AlpgenPythia_Auto_P2011C_WmunuNp0
	117690.AlpgenPythia_P2011C_WmunuNp0
W mu,nu 1_jet	147034.AlpgenPythia_Auto_P2011C_WmunuNp1
	117691.AlpgenPythia_P2011C_WmunuNp1
W mu,nu 2_jet	147035.AlpgenPythia_Auto_P2011C_WmunuNp2
	117692.AlpgenPythia_P2011C_WmunuNp2
W mu,nu 3_jet	147036.AlpgenPythia_Auto_P2011C_WmunuNp3
	117693.AlpgenPythia_P2011C_WmunuNp3
W mu,nu 4_jet	147037.AlpgenPythia_Auto_P2011C_WmunuNp4
	117694.AlpgenPythia_P2011C_WmunuNp4
W mu,nu 5_jet	147038.AlpgenPythia_Auto_P2011C_WmunuNp5incl
	117695.AlpgenPythia_P2011C_WmunuNp5
W tau,nu 0_jet	147041.AlpgenPythia_Auto_P2011C_WtaunuNp0
	117700.AlpgenPythia_P2011C_WtaunuNp0
W tau,nu 1_jet	147042.AlpgenPythia_Auto_P2011C_WtaunuNp1
	117701.AlpgenPythia_P2011C_WtaunuNp1
W tau,nu 2_jet	147043.AlpgenPythia_Auto_P2011C_WtaunuNp2
	117702.AlpgenPythia_P2011C_WtaunuNp2
W tau,nu 3_jet	147044.AlpgenPythia_Auto_P2011C_WtaunuNp3
	117703.AlpgenPythia_P2011C_WtaunuNp3
W tau,nu 4_jet	147045.AlpgenPythia_Auto_P2011C_WtaunuNp4
	117704.AlpgenPythia_P2011C_WtaunuNp4
W tau,nu 5_jet	147046.AlpgenPythia_Auto_P2011C_WtaunuNp5incl
	117705.AlpgenPythia_P2011C_WtaunuNp5

Z e,e 0_jet	147105.AlpgenPythia_Auto_P2011C_ZeeNp0
	117650.AlpgenPythia_P2011C_ZeeNp0
Z e,e 1_jet	147106.AlpgenPythia_Auto_P2011C_ZeeNp1
	117651.AlpgenPythia_P2011C_ZeeNp1
Z e,e 2_jet	147107.AlpgenPythia_Auto_P2011C_ZeeNp2
	117652.AlpgenPythia_P2011C_ZeeNp2
Z e,e 3_jet	147108.AlpgenPythia_Auto_P2011C_ZeeNp3
	117653.AlpgenPythia_P2011C_ZeeNp3
Z e,e 4_jet	147109.AlpgenPythia_Auto_P2011C_ZeeNp4
	117654.AlpgenPythia_P2011C_ZeeNp4
Z e,e 5_jet	147110.AlpgenPythia_Auto_P2011C_ZeeNp5incl
	117655.AlpgenPythia_P2011C_ZeeNp5
Z mu,mu 0_jet	147113.AlpgenPythia_Auto_P2011C_ZmumuNp0
	117660.AlpgenPythia_P2011C_ZmumuNp0
Z mu,mu 1_jet	147114.AlpgenPythia_Auto_P2011C_ZmumuNp1
	117661.AlpgenPythia_P2011C_ZmumuNp1
Z mu,mu 2_jet	147115.AlpgenPythia_Auto_P2011C_ZmumuNp2
	117662.AlpgenPythia_P2011C_ZmumuNp2
Z mu,mu 3_jet	147116.AlpgenPythia_Auto_P2011C_ZmumuNp3
	117663.AlpgenPythia_P2011C_ZmumuNp3
Z mu,mu 4_jet	147117.AlpgenPythia_Auto_P2011C_ZmumuNp4
	117664.AlpgenPythia_P2011C_ZmumuNp4
Z mu,mu 5_jet	147118.AlpgenPythia_Auto_P2011C_ZmumuNp5incl
	117665.AlpgenPythia_P2011C_ZmumuNp5
Z tau,tau 0_jet	147121.AlpgenPythia_Auto_P2011C_ZtautauNp0
	117670.AlpgenPythia_P2011C_ZtautauNp0
Z tau,tau 1_jet	147122.AlpgenPythia_Auto_P2011C_ZtautauNp1
	117671.AlpgenPythia_P2011C_ZtautauNp1
Z tau,tau 2_jet	147123.AlpgenPythia_Auto_P2011C_ZtautauNp2
	117672.AlpgenPythia_P2011C_ZtautauNp2
Z tau,tau 3_jet	147124.AlpgenPythia_Auto_P2011C_ZtautauNp3
	117673.AlpgenPythia_P2011C_ZtautauNp3
Z tau,tau 4_jet	147125.AlpgenPythia_Auto_P2011C_ZtautauNp4
	117674.AlpgenPythia_P2011C_ZtautauNp4
Z tau,tau 5_jet	147126.AlpgenPythia_Auto_P2011C_ZtautauNp5incl
	117675.AlpgenPythia_P2011C_ZtautauNp5

J/ψ Weight Calculation

A total weight was calculated for each J/ψ candidate using this formula:

Weight =
$$\frac{1}{J/\psi \text{ acceptance } \times \mu^+ \text{ efficiency } \times \mu^- \text{ efficiency}}$$

This increases the number of J/ψ candidate events.

There are 8 possible J/ ψ polarizations, leading to 8 possible weights. This is the flat or un-polarized weight.

flatWeight

Additions:

- Previously we looked at an inclusive J/ψ sample to determine the best fit parameters.
- But the $pT_{\mu}^{J/\psi}$ distribution does not well match that of the associated J/ ψ +W.

- So we made a sample of J/ψ +anti_W, meaning that if the any of the W muon requirements or the MET requirement failed then the event was kept.
- This provided a $pT_{\mu}^{J/\psi}$ distribution better matching that of the associated $J/\psi+W$.

• The J/ ψ mass distribution of this J/ ψ +anti_W sample was fit to determine the best fit parameters.

26/04/

Backup: Signal Extraction

Sample:

• J/ψ+anti_W

Fit parameters:

- $2.4 < M^{J/\psi} < 3.8$
- M_{bkg}^{J/ψ} 2nd O
 pol
- Ψ(2S): Gaussian

• Using a 2^{nd} order polynomial as the J/ ψ mass background model and including the $\Psi(2S)$ peak gives these parameters:

central				forward			
NO.	NAME	VALUE	ERROR	NO.	NAME	VALUE	ERROR
	1 Tau2s	1.08760e+00	1.18887e-01		1 Tau2s	1.24623e+00	2.31165e-01
	2 bkgTau1	2.95177e+00	2.16996e+00		2 bkgTau1	2.85691e-01	1.96788e-01
	3 bkgTau2	1.61892e+00	2.61635e-01		3 bkgTau2	1.35254e+00	5.83599e-02
	4 bkgTau3	3.43400e-01	1.26278e-02		4 bkgTau3	2.81121e-01	2.57449e-02
	5 c0	7.01507e+00	3.07095e-01		5 c0	7.18031e-01	1.84893e+00
	6 c1	-4.59626e-01	6.41679e-02		6 c1	2.30015e-01	4.03340e-01
	7 c2	-2.46112e-01	1.50481e-02		7 c2	-9.14389e-02	9.62876e-02
	8 fittedTau	1.36427e+00	3.80151e-02		8 fittedTau	1.37404e+00	5.62603e-02
	9 mMean	3.09193e+00	8.76738e-04		9 mMean	3.09065e+00	2.55961e-03
	10 mSigma	4.33588e-02	7.64136e-04		10 mSigma	6.89297e-02	2.56097e-03
	11 n_2S	9.47638e-03	5.92398e+00		11 n_2S	8.58729e-06	7.80382e+00
	12 n_np_2S	7.88114e+01	8.51577e+00		12 n_np_2S	7.86031e+01	2.31638e+01
	13 n_npj	1.28722e+03	2.58692e+01		13 n_npj	1.07496e+03	4.78669e+01
	14 n_npj_bk	1.71394e+03	3.08782e+01		14 n_npj_bk	1.56718e+03	7.13539e+01
	15 n_pj	2.56706e+02	1.41395e+01		15 n_pj	2.96412e+02	2.99329e+01
	16 n_pj_bk	1.18506e+03	2.68243e+01		16 n_pj_bk	9.87735e+02	6.13279e+01
	17 nonPromptRatio	-5.51039e-02	2.34216e-01		17 nonPromptRatio	-6.50222e-02	5.71885e-02
	18 npc0	-3.74208e-01	4.32556e-04		18 npc0	-3.67145e-01	1.29307e-02
	19 npc1	-7.26059e-03	1.18239e-04		19 npc1	-3.72517e-03	4.34024e-03
	20 npc2	9.73654e-03	3.24053e-05		20 npc2	8.18779e-03	9.85155e-04
	21 promptRatio	3.57495e-01	1.78779e-02		21 promptRatio	3.86754e-01	6.21018e-02
	22 tMean	-3.73363e-03	2.39413e-03		22 tMean	6.08855e-03	6.85421e-03
	23 tSigma	7.45019e-02	2.40505e-03		23 tSigma	9.25518e-02	6.86076e-03

- mMean and mSigma for J/ ψ mass are fixed and applied to the data on the following slide:

Sample:

- J/ψ+W data

Fit parameters:

- $2.4 < M^{J/\psi} < 3.8$
- $M^{J/\psi}$ Fixed
- M_{bkg}^{J/ψ} 2nd O
 pol
- Ψ(2S): Gaussian

Sample:

- J/ψ+W data

Fit parameters:

- $2.4 < M^{J/\psi} < 3.8$
- M^{J/ψ} Floating
- M_{bkg}^{J/ψ} 2nd O
 pol

D. Bertsche 85

Sample:

J/ψ+W data

Fit parameters:

- 2.4 < $M^{J/\psi}$ < 3.8
- $M^{J/\psi}$ Fixed
- $M_{bkg}^{J/\psi} exp$

26/04/

Component variables of Wmt These plots show the 3 variables used to calculate Wmt.

$$m_T(W) \equiv \sqrt{2p_T(\mu)E_T^{miss}(1 - \cos(\phi^{\mu} - \phi^{\nu}))}$$

 μ_{pt} , MET (met_reffinal) and $\Delta \phi(\mu, v)$ MC all show regions of more accurate modeling and regions of poorer modeling of the data. μ pt, μ+

MET [GeV]

Backgrounds Background Removal, Associated $J/\psi + W^{\pm}$: QCD/Mulitjet

ABCD + sPlot method

 J/ψ + W sample *fake factor* = A/B = 0.150 ± 0.015 # of signal events in J/ψ + W sample = 430 ± 28

QCD fraction found with ABCD + sPlot method = $D \times A/B \div$ signal = 0.8 +/- 0.4%

Associated J/ ψ + W [±] : Pileup and DPS

26/04/2016

oss section, J/	ψ->μμ		Avera	ge numk	per of ex	tra 💼		Nu	umber o	of W canc	lidates i	n inclusi	ve	
easurement		₽	pileup	vertices	s≈2.3±	0.2 🦊		W	sample	applied	here: 5,	213 x 10	7	
	pileup bac	kground e	stimation	prompt										L
Bin y x PT	sig(Promp	t Jpsi -> mı	ı,mu)(nb)	n_extr_ve	rt sg_ibin/s	ig_inel (10^-8)	d^2 sig /	sig_bin dy	PT (10^-8)	<eff acc="" x=""></eff>	Expected V	rield		I
		+err	-err		+err	-err		+err	-err			+err	-err	L
(0,1) x (8.5,10)	5,985	0,116	0,116	9,182	0,679	0,67	9 3,061	0,226	0,226	0,23	1,101	0,081	0,081	1
(0,1) x (10,14)	4,585	0,092	0,092	7,035	0,522	0,52	2 0,879	0,065	0,065	0,39	1,430	0,106	0,106	1
(0,1) x (14,18)	0,956	0,020	0,020	1,467	0,109	0,10	9 0,183	0,014	0,014	0,53	0,405	0,030	0,030	1
(0,1) x (18,30)	0,434	0,008	0,008	0,665	0,049	0,049	9 0,028	0,002	0,002	0,65	0,225	0,017	0,017	1
(0,1) x (30,60)	0,050	0,001	0,001	0,077	0,006	i 0,00	6 0,0013	9,51E-05	0,000	0,73	0,029	0,002	0,002	1
(0,1) x (60,150)	0,002	0,000	0,000	0,004	0,000	0,000	0 2E-05	1,83E-06	0,000	0,84	0,002	0,000	0,000	1
(1,2.1) x (8.5,10)	6,008	0,119	0,119	9,218	0,683	0,68	3 1,047	0,078	0,078	0,39	1,874	0,139	0,139	1
(1,2.1) x (10,14)	5,232	0,097	0,097	8,027	0,592	0,592	2 0,912	0,067	0,067	0,49	2,050	0,151	0,151	1
(1,2.1) x (14,18)	0,996	0,018	0,018	1,528	0,112	. 0,11	2 0,174	0,013	0,013	0,63	0,502	0,037	0,037	1
(1,2.1) x (18,30)	0,425	0,006	0,006	0,652	0,048	0,04	8 0,025	0,002	0,002	0,73	0,248	0,018	0,018	1
(1,2.1) x (30,60)	0,043	0,001	0,001	0,067	0,005	0,00	5 0,001	7,44E-05	0,000	0,74	0,026	0,002	0,002	1
(1,2.1) x (60,150)	0,002	0,000	0,000	0,003	0,000	0,000	0 1E-05	1,19E-06	0,000	0,81	0,001	0,000	0,000	
	dupplicate	No candid		dubas XV ran			0.000000000	× 30.057			7,894	0,251	0,251	P
	DPS estima	tion		prompt										<u> </u>
Bin y x PT	sig(Prompt	Jpsi -> mu	,mu)(nb)	n_extr_ver	t sg_ibin/si	g_inel (10^-8)	d^2 sig / s	ig_bin dy P	T (10^-8)	<eff acc="" x=""></eff>	Expected J	psi+W Yiel	d	ĺ
		+err	-err		+err	-err		+err	-err		-	+err	-err	
(0,1) x (8.5,10)	5,985	0,116	0,116	39,898	15,446	15,446	13,299	5,149	5,149	0,23	4,784	1,852	1,852	
(0,1) x (10,14)	4,585	0,092	0,092	30,569	11,836	11,836	3,821	1,479	1,479	0,39	6,215	2,406	2,406	1
(0,1) x (14,18)	0,956	0,020	0,020	6,373	2,468	2,468	0,797	0,308	0,308	0,53	1,761	0,682	0,682	1
(0,1) x (18,30)	0,434	0,008	0,008	2,891	1,119	1,119	0,120	0,047	0,047	0,65	0,980	0,379	0,379	1
(0,1) x (30,60)	0,050	0,001	0,001	0,334	0,129	0,129	0,006	0,002	0,002	0,73	0,126	0,049	0,049	1
(0,1) x (60,150)	0,002	0,000	0,000	0,016	0,006	0,006	9,12E-05	3,55E-05	0,000	0,84	0,007	0,003	0,003	l .
														1
(1,2.1) x (8.5,10)	6,008	0,119	0,119	40,053	15,507	15,507	4,552	1,762	1,762	0,39	8,143	3,153	3,153	1
(1,2.1) x (10,14)	5,232	0,097	0,097	34,881	13,503	13,503	3,964	1,534	1,534	0,49	8,910	3,449	3,449	1
(1,2.1) x (14,18)	0,996	0,018	0,018	6,640	2,570	2,570	0,755	0,292	0,292	0,63	2,181	0,844	0,844	1
(1,2.1) x (18,30)	0,425	0,006	0,006	2,833	1,096	1,096	0,107	0,042	0,042	0,73	1,078	0,417	0,417	1
(1,2.1) x (30,60)	0,043	0,001	0,001	0,290	0,112	0,112	0,004	0,002	0,002	0,74	0,112	0,043	0,043	1
(1,2.1) x (60,150)	0,002	0,000	0,000	0,012	0,005	0,005	6,18E-05	2,4E-05	0,000	0,81	0,005	0,002	0,002	
	dimental a second	in a substant		June mar i Sare	1000110101			SC 111277.7			34 301	5 706	5 706	υ

Pileup

89

D. Bertsche

Background Removal: B[±]_c decays

- A second estimate was made using sPlot
- An additional parameter was added and given the value of:

 $\frac{B_c \text{ lifetime}}{B^0 \text{ lifetime}} \times \text{ fittedTau} = \frac{0.46}{1.52} \times 1.51776 \simeq 0.46 \text{ } ps$

• No evidence of any B_c^{\pm}

 $B_c^{\pm} \to J/\psi \ l^{\pm}\nu X$

200	PromptSig_Frac = 0.50±0.00					
4	Mean = 3.096916 ± 0.000000 , \bigwedge Prompt J/ ψ					
0 0180	Sigma = 0.049992±0.002557	EXT	PARAMETER		APPROXIMATE	I
	χ^2 /ndf = 10.641	NO.	NAME	VALUE	ERROR	S
ຼິຍ160	Prompt Bc Background	1	bkgTau1	9.31903e-01	1.36841e-01	6
la la		2	bkgTau2	2.99992e+00	4.28802e-01	6
Ž140		3	bkgTau3	3.66415e-01	3.52348e-02	2
		4	c0	5.30967e-01	5.69520e-01	5
120		5	c1	-7.42628e-02	7.12176e-01	1
		6	fittedTau	1.51776e+00	7.70119e-02	1
100		7	mSigma	4.99922e-02	2.55734e-03	3
	$=$ $\downarrow / \backslash \uparrow$	8	n_Bc_bk	6.49114e-02	2.87519e+01	8
80	$=$ $// \langle \rangle$	9	n_npj	6.51138e+02	3.17902e+01	1
		10	n_npj_bk	5.12589e+02	3.57530e+01	1
60		11	n_pj	4.46163e+02	2.78018e+01	1
40	=	12	n_pj_bk	7.48952e+02	3.90811e+01	1
40		13	nonPromptRat	tio 6.39307e	e-01 6.84294e	-02
20		14	npc0	6.20787e-01	3.96530e-02	1
20		15	npc1	-2.59586e-01	1.17902e-02	4
٥		16	promptRatio	4.34640e-01	4.78859e-02	
2.	6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.	5 17	tMean	3.10916e-03	4.15477e-03	3
	J/Ψ(1S) Mass [GeV]	18	tSigma	8.69008e-02	4.25519e-03	5

Backup: Backgrounds <u>Testing No Z-veto Cut:</u>

Number of Prompt Events	Absolute Rapidity	With Z Veto Cut	No Z Veto Cut	% change
Data	0< y <2.1	487.5±52.1	489.4 ± 52.5	0.4% (no change within uncertainties)
Reconstructed MC	0< y <2.1	12,689	12,704	0.1%

Z Veto Pre Cut

Note: Chapter 7.2

Background Removal: Z+jets

$$Z \to \mu^+ \mu^-$$

- The invariant mass of the W muon and opposite sign "J/ψ" muon is calculated.
- If it's near the Z mass (81-101 GeV), the event is cut.
- EB ok to remove this cut.

Testing no z vertex cut Cut:

10

5

15

20

25

The extra ~8 events seen in-between cuts of 10mm and 20 mm are accounted for by pileup interactions

 μ zvtx plus

-10

-5

0

5

10

15

20

10

 10^{-1}_{-25}

-20

-15

-10

-5

 $J/\Psi \rightarrow \mu\mu$ Cross Section Extrapolations

26/04/2016

 $J/\Psi \rightarrow \mu\mu$ Cross Section Extrapolations

26/04/2016

26/04/2016

- There is an online FONLL tool that can generate non-prompt J/ψ cross-sections for any given y and pT: <u>http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html</u>
- It does not generate **prompt** J/ψ cross-sections, so it's not useful for this analysis

Background Removal: Multi-jet

ABCD Method for multi-jet background determination

Multijet background can't be determined from MC, so a data driven method is used.

<u>Categories</u> A: MET < 20 GeV, MT(W) < 40 GeV, isolated muon B: MET < 20 GeV, MT(W) < 40 GeV, anti-isolated muon C: MET > 20 GeV, MT(W) > 40 GeV, isolated muon (signal region) D: MET > 20 GeV, MT(W) > 40 GeV, anti-isolated muon

Muon Isolation Criteria

- P = Track isolation momentum in cone of $\Delta R < 0.3$
- E = Calorimeter isolation energy in cone of $\Delta R < 0.3$

Method:

- 1. Subtract events in all other known MC modeled backgrounds from the data events in each region
- 2. (Events in A)/(Events in B) = muon isolation *fake factor*
- 3. fake factor x D = multi-jet background

Assumption is that this ratio is constant: D/B = C/A

	P < 0.05pT	P > 0.05pT
E < 0.05pT	isolated	
E > 0.05pT		anti- isolated

Background Removal: Multi-jet (ABCD Method)

Example calculation for positive muons in inclusive W sample:

26/04/2016

26/04/2016

Stack Plots for region A

Stack Plots for regions B

Stack Plots for region D

Backup: Systematics

J/ψ Spin Polarization Maps

26/04/2016

Backup: Systematics

Associated J/ ψ + W [±] : Systematic Uncertainty

Vertex separation

Requiring J/ ψ vertex to be within 10 mm of the W vertex might bias the measurement of the yield.

We use the yield difference between the nominal cut of 10 mm and a cut of 20 mm as a systematic.

Backup: Results

7 TeV Cross- Section Ratio Measurement

26/04/2016

Theory Prediction Numbers

The theory numbers were refined based on a new acceptance calculation. Calculated by applying our W cuts to PowhegPythia8 $W^{\pm} \rightarrow \mu^{\pm}\nu$ MC samples (with DSIDs 147801 & 147804) of 550,000 events each. Acceptance is defined as the number of events passing cuts over the total number of events generated.

 $\alpha + = 0.460$ $\alpha - = 0.451$

The new theory total σ ratio numbers for **SPS color-octet** processes:

Set	1		Set 2	Measu	urement
LO	NLO	LO	NLO	Data	±
0.708	3.67	1.27	4.26	80.10	19.57907

The units are x 10⁻⁷ GeV and the measured value estimated to come from SPS processes is shown for comparison

Inclusive Differential Measurement Details

Table 20: The inclusive (SPS+DPS) cross-section ratio $dR_{W+J/\psi}^{incl}/dp_T$ for prompt J/ψ . Estimated DPS contributions for each bin, based on the assumptions made in this study, are presented.

$J/\psi \propto r^{J/\psi}$ [CoV]	Inclusive prompt ratio [×10 ⁻⁷ / GeV]			Estimated DPS [×10 ⁻⁷ /GeV]
$[y ~ r \times p_{\rm T} ~ [\text{Oev}]$	value \pm (stat) \pm (syst) \pm (spin)			assuming $\sigma_{\rm eff} = 15 {\rm mb}$
(0, 1) × (8.5, 10)	13.0 ± 3.2	± 1.1	± 4.3	0.63 ± 0.24
$(0,1) \times (10,14)$	4.02 ± 1.27	± 1.42	± 1.07	0.30 ± 0.12
(0,1) × (14,18)	0.890 ± 0.426	± 0350	± 0189	0.084 ± 0.033
$(0,1) \times (18,30)$	0.351 ± 0.141	± 0.038	± 0.066	0.016 ± 0.006
$(0,1) \times (30,60)$	0.0343 ± 0.0321	± 0.0073	± 0.0039	0.00081 ± 0.00031
(0,1) × (60,150)	0.00886 ± 0.00589	± 0.00055	± 0.00049	0.00002 ± 0.00001
$(1, 2.1) \times (8.5, 10)$	10.67 ± 3.02	± 1.89	± 2.95	1.29 ± 0.55
(1,2.1) × (10,14)	3.86 ± 0.87	± 0.50	± 0.82	0.40 ± 0.15
$(1, 2.1) \times (14, 18)$	1.35 ± 0.46	± 0.08	± 0.23	0.095 ± 0.036
$(1, 2.1) \times (18, 30)$	0.282 ± 0.133	± 0.026	± 0.036	0.016 ± 0.006
(1, 2.1) × (30, 60)	0.0408 ± 0.0346	± 0.0051	± 0.0035	0.00063 ± 0.00024
$(1, 2.1) \times (60, 150)$	0.0019 ± 0.0047	± 0.0003	± 0.0001	0.0000096 ± 0.0000037

Backup: Results Non-Prompt J/ ψ : Measurement Attempt

Not feasible due to large backgrounds, dominated by *tT*. Furthermore the choice of MC generator (105200* or 117050⁺) gives very different results and would cause a large systematic uncertainty.

Cutflow Efficiency Ratio

Note: Appendix D.3

W transverse mass [GeV]

W transverse mass shapes associated with prompt and non-prompt events are compatible.

113

After All Cuts

$1077 J/\psi + W^{\pm}$ Candidates survive all cuts

26/04/2016

Splot separates out prompt component for: W transverse mass and $\Delta \phi(J/\psi,W)$

This angle, $\Delta \phi(J/\psi, W)$ is a probe into double parton scattering (DPS) processes. Single parton scattering (SPS) peaks at π , and DPS is flat.

W cuts Efficiency Check – Using truth MC

$$R_{J/\psi} \equiv \frac{\sigma_{W+J/\psi}}{\sigma_W} \equiv \frac{\frac{N_{W+J/\psi}}{\mathcal{L} \times \epsilon_W \times \epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}}{\frac{N_W}{\mathcal{L} \times \epsilon_W}} \equiv \frac{1}{N_W} [\frac{N_{W+J/\psi}}{\epsilon_{J/\psi} \times \mathcal{A}_{J/\psi}}]$$

The cross-section ratio calculation (above) depends on the efficiency of the W cuts being the same for the J/ ψ +W and Inclusive W samples. A test (below) with MC truth info shows that the efficiency is the same.

26/04/2016

Backup: Theory

The Hierarchy Problem

Alison Lister (UBC) 2015