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The Standard Model

LSP, WIMPS, ! R, Axions, ..."  " 𝚲, Quintessence,

Modified Gravity? ...
Coupled Dark Sector?,

The Dark Sector of the Universe 

Dark Energy+Dark Matter: ~95% of density content! 

What is CDM?: non-luminous weakly interacting 
particles (axions, wimps, neutrinos, etc). 

What is DE?: permeates the universe uniformly 
causing the accelerated expansion of the universe 
(Λ, modified gravity, quintessence). 

Ordinary Matter: ~5% of density content! 
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Puzzle of cosmic coincidence

• If it is not accidental ⇒ an exchange of energy 
is plausible, and therefore a coupling, between 
dark energy and dark matter.

• Why is the dark energy density of same order 
(only about two times bigger) as that of matter 
density in the present cosmological epoch, as 
observed?

• Given that we do not know the nature of either 
DE or DM, coupling between them is not 
excluded. 

• Coupled models can aliviate the coincidence 
problem and have late time accelerating scaling 
solutions 
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• Several coupled DM/Quintessence (scalar 
field) models have been proposed in the 
literature, where coupling is purely  
phenomenological 

• Therefore no fundamental origin is 
provided for such coupling

[Amendola, ’00]
[see 1310.0085 for a review]

• I will present a geometric origin for such 
coupling via a disformal derivative coupling 
between the two fluids from D-brane world 
scenarios

[Koivisto, Wills, IZ, ’14]
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• In scalar tensor theories, besides a conformal 
relation between two metrics:  

Conformal and Disformal couplings 

[Bekenstein, ’92]

g̃µ⌫ = C(�)gµ⌫

+D(�)@µ�@⌫�

C(�)

D(�)

conformal transformation (preserves angles)

disformal transformation (distorts angles)
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Conformal and Disformal couplings 

• What can cosmology tell us about such 
couplings? 
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• D-brane’s matter can be identified with dark 
matter (massive fields) or dark radiation 
(massless fields). 

• Brane motion parameterised by the brane’s 
position in extra dimension is identified with 
dark energy: DBI quintessence

• Dark Sector arises from same D-brane.

SDBI = �T3

Z

W
d4⇠

p
�det(�ab + Fab)

�µ⌫ = C(r)gµ⌫ +D(r) @µr@⌫r(                           induced metric on brane)



Dark D-brane Model

• A naturally coupled DM/DE emerges:  System is 
described by action 

S = SEH + S� + Sm

SEH =
1
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(For a specific 10D background and D-brane, C, D have defined forms)

(g̃µ⌫ = C(�)gµ⌫ +D(�)@µ�@⌫�)



Late time evolution: scaling solutions

Consider FLRW metric ds

2 = �dt+ a

2(t)dx2

• Einstein’s and scalar equations are
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{ DE has more accelerating power 

DE has less accelerating power 

DDM redshifts slower than 

DDM redshifts faster than 

• Total energy is conserved            but 
ind ividual conser vation equations are 
modified:

rµ(T
µ⌫
� + Tµ⌫) = 0

!eff > 0

!eff < 0

with ,

⇢̇+ 3H⇢(1 + !eff ) = 0
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accelerating scaling solution 

• Total energy is conserved            but 
ind ividual conser vation equations are 
modified:

rµ(T
µ⌫
� + Tµ⌫) = 0

with ,

⇢̇+ 3H⇢(1 + !eff ) = 0

⇢̇� + 3H⇢�(1 + !eff
� ) = 0

when !eff = !eff
� < �1/3



Explicit example: AdS5
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• Scaling late time solutions can be  
found for 

D = 1/C = h1/2 ,

this corresponds to a D3-brane moving in an 
AdS5 background. Dynamical system analysis:

warped geometry

b
u
l
k

h =
�

�4
,

�0 = �V0  determines the nature of the fixed points 



The resulting fixed points for AdS5 are:

-10 -5 0 5 10 15 20
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

N

w

-10 -5 0 5 10 15 20
-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

N

w

f effective

f

DDM eff.

Total fluid

Equation of state for

Figure 2: The time evolution of the various equations of state as functions of the e-floding

time N = log a when �0 = 50. In the left panel the kinetic energy x is initially small and

the w
�

= p
�

/⇢
�

(purple dash-dotted line) as well as the e↵ective equation of state for the

field weff

�

(blue dashed line) are essentially w
�

= �1 until the coupling begins to modify

the dynamics. The e↵ect of the the coupling is to increase the weff

�

and to lower the

e↵ective equation of state for dark matter weff

DDM

(black dotted line) so they both track the

total equation of state w (red thick line) during the scaling epoch. When this epoch ends,

the dark matter dilutes faster than dark energy, but as seen from the plot, the coupling

continues to have an e↵ect on the DDM-component. In the right panel, initial conditions

are set such that the kinetic energy x is significant and thus w
�

> �1. In such a case the

universe evolves to the kinetic attractor soon after the coupling kicks in, before the scaling

solution is reached.

a virtually non-warped region in the early universe, after reaching the matter scaling fixed

point the universe can stay there for in principle arbitrary number of e-folds before the

brane has reached close enough to the tip of the throat to end the matter scaling behaviour.

On the other hand, if the initial conditions are relativistic enough the x-variable grows with

a “saturated” rate also during matter dominated epoch and there is no di↵erence in the

observational predictions. In the right panel of figure 3 we see that the scaling of the

�-factor, which is identical for all initial values during the matter epochs, changes only

when the attractor is reached. IZ: again, this is related to the problem with section

3.1.2, so needs to be explained: The scaling is such that �� ⇠ a�3w, as expected

already from the considerations in Section 3.1.2.

Finally we check how cosmology depends upon the parameter �0, which is the sole

theoretical quantity that controls the evolution. We illustrate this in figure 4 by plotting

x and ⌦ as functions of the scale factor for �0 of a few di↵erent orders of magnitude. In

complete agreement with the results of the analytic study in section 3.2, we find that the

�0 = 1 is the dividing value above which the universe accelerates and eventually ends with

⌦ = 0, and below which the universe decelerates forever and ⌦ retains a constant finite

value.

– 29 –

-10 -5 0 5 10 15 20 25
-1.0

-0.5

0.0

0.5

1.0

N

W,w
G=10

-10 -5 0 5 10 15 20 25
-1.0

-0.5

0.0

0.5

1.0

N

W,w
G=100

Figure 1: The evolution of the fractional energy densities and the total equation of state

as functions of the e-folding time N = log a for �0 = 10 (left panel) and �0 = 100 (right

panel). The equation of state is the dash-dotted purple line that settles to its attractor

value Eq. (3.53). The black dotted line is the ⌦ for matter that drops first from the matter-

dominated value ⌦ = 1 to the saddle point solution value given by Eq. (3.52) and then to

zero as the universe eventually reaches the attractor described by Eq.(3.55). At the latter

transition, the kinetic energy contribution of the field, x2, plotted as the blue dashed line,

becomes important. The potential energy contribution z2, plotted as the red solid line,

retains its value through the two latter stages.

for these quantities is shown in figure 2. Because the �� grows with time, there is energy

transfer from the scalar field to dark matter that makes the latter dilute slower. During

the scaling era, by definition, w = weff

DDM

= weff

�

. Even when this era ends, the coupling

continues to slow down the dilution of the DDM energy density, so that weff

DDM

remains at

a constant negative value. In the right panel of figure 2, we show an example of a case when

initially the energy density of the field is not potential-dominated. Then the kinetic scaling

era begins shortly after the coupling becomes e�cient, and the scaling behavior never quite

takes place. Such initial conditions require the coupling and the kinetic contribution to

both become significant around the present epoch, and are thus less generic than the initial

conditions that allow some e-folds of scaling. An interesting detail to observe is that due to

the fact that we have set the field evolving as an initial condition, the coupling is e↵ective

from early on: in particular it forces the energy density of the DBI to remain constant.

IZ: I don’t quite see this, could you explain it better? The causes an energy flow

from dark matter to dark energy, which contributes a very tiny positive weff

DDM

in such a

way that IZ: why? weff

DDM

= (1 + w
�

)⇢
�

/⇢, i.e. it forces weff

�

= �1 as seen from (3.24).

To get a better understanding at the dynamics behind this evolution and the role of

initial conditions, we plot the variable x and the Lorenz factor � as functions of the scale

factor in figure 3 for di↵erent initial values of �. We start with a small x and z: for a fixed

�, the initial value of z determines when we enter into the saddle point, and the initial

value of x when into the attractor. We see that the transition from the accelerating fixed

point to another occurs when x reaches its critical value given by Eq. (3.55). The more

nonrelativistic � is, the longer this will take. If the brane starts moving very slowly from
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• Dark D-brane model good candidate for late 
time evolution. 

• How about effect in early universe expansion?

e.g. impact in DM relic abundances

Early time effects?

• Departures from standard cosmology can arise 
due to the different expansion rate,   , 
determined by scalar evolution  

H̃

⟹

[Kamionkowski, Turner, ’90]
[Salati, ’03; Rosati, ’03]

[Profumo, Ullio, ’03] 



• A conformally coupled DM/Quintessence model 
was considered by Catena et al. 
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FIG. 8: The Expansion rate of the Universe H̃ and the WIMP
interaction rate Γ = Y s 〈σannv〉 are plotted as a function of
the temperature. The re-annihilation effect discussed in the
text is outlined. The small drop in the rates at T = 300 MeV
is due to the quark–hadron phase transition.

FIG. 9: The ratio between the freeze–out values of xf =
m/Tf in ST cosmology and in GR as a function of the WIMP
mass. The dashed, solid and dotted lines refer to 〈σannv〉 =
10−4 GeV−2, 10−7 GeV−2 and 10−14 GeV−2, respectively.

freeze–out temperature is anticipated about a factor of 2,
with a dependence also on the annihilation cross section,
as is clear from Eq. (36): for very low values of 〈σannv〉
the freeze-out temperature may be anticipated up to a
factor of 5. For these low cross sections the relic abun-
dance is anyway largely overabundant: we can therefore
quantify the reduction in xf in a factor which ranges

FIG. 10: Increase in the WIMP relic abundance in ST cos-
mology with respect to the GR case. The solid curve refers
to an annihilation cross section constant in temperature, i.e.
〈σannv〉 = a = 10−7 GeV−2, while the dashed line stands for
an annihilation cross section which evolves with temperature
as 〈σannv〉 = b/x = 10−7 GeV−2/x.

between 10% and 40% for WIMPs which can provide
abundances in the cosmologically acceptable range.

The amount of increase in the relic abundance which
is present in ST cosmology is shown in Fig. 10. The
solid curve refers to an annihilation cross section con-
stant in temperature, i.e. 〈σannv〉 = a, while the dashed
line stands for an annihilation cross section which evolves
with temperature as: 〈σannv〉 = b/x (these two cases
correspond to the two limiting situations of the usual
non–relativistic expansion of the thermally averaged an-
nihilation cross section: 〈σannv〉 = a + b/x). In the case
of s–wave annihilation the increase in relic abundance
ranges from a factor of 10 up to a factor of 400. For a
pure b/x dependence, the enhancement can be as large
as 3 orders of magnitude.

The behaviours shown in Fig. 10, which have been
obtained by a numerical integration of the Boltzmann
equation Eq. (31), can be understood by employing the
approximate analytical solution (35). In the case of
〈σannv〉 = a, Eq. (35) gives:

1

Y0
= G m G(xGR

f )
a

xGR
f

(38)

in the standard GR case, and

1

Y0
= G m

[

G(xST
f )

Ā

a

1.82

(

1

(xST
f )1.82

−
1

(xϕ)1.82

)]

+ G m

[

G(xϕ)
a

xϕ

]

(39)

dY

dx
= � 1

x

s
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h�annvi(Y 2 � Y 2

eq)
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H

C1/2

✓
1 +

d lnC

2 d�

d�
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◆

• Studied modification of the relic abundance of 
WIMP’s due to change in expansion rate at the 
time of CDM freeze-out 

[Catena et al. ’04]
[Lahanas et al. ’06]



• A conformally coupled DM/Quintessence model 
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FIG. 8: The Expansion rate of the Universe H̃ and the WIMP
interaction rate Γ = Y s 〈σannv〉 are plotted as a function of
the temperature. The re-annihilation effect discussed in the
text is outlined. The small drop in the rates at T = 300 MeV
is due to the quark–hadron phase transition.

FIG. 9: The ratio between the freeze–out values of xf =
m/Tf in ST cosmology and in GR as a function of the WIMP
mass. The dashed, solid and dotted lines refer to 〈σannv〉 =
10−4 GeV−2, 10−7 GeV−2 and 10−14 GeV−2, respectively.

freeze–out temperature is anticipated about a factor of 2,
with a dependence also on the annihilation cross section,
as is clear from Eq. (36): for very low values of 〈σannv〉
the freeze-out temperature may be anticipated up to a
factor of 5. For these low cross sections the relic abun-
dance is anyway largely overabundant: we can therefore
quantify the reduction in xf in a factor which ranges

FIG. 10: Increase in the WIMP relic abundance in ST cos-
mology with respect to the GR case. The solid curve refers
to an annihilation cross section constant in temperature, i.e.
〈σannv〉 = a = 10−7 GeV−2, while the dashed line stands for
an annihilation cross section which evolves with temperature
as 〈σannv〉 = b/x = 10−7 GeV−2/x.

between 10% and 40% for WIMPs which can provide
abundances in the cosmologically acceptable range.

The amount of increase in the relic abundance which
is present in ST cosmology is shown in Fig. 10. The
solid curve refers to an annihilation cross section con-
stant in temperature, i.e. 〈σannv〉 = a, while the dashed
line stands for an annihilation cross section which evolves
with temperature as: 〈σannv〉 = b/x (these two cases
correspond to the two limiting situations of the usual
non–relativistic expansion of the thermally averaged an-
nihilation cross section: 〈σannv〉 = a + b/x). In the case
of s–wave annihilation the increase in relic abundance
ranges from a factor of 10 up to a factor of 400. For a
pure b/x dependence, the enhancement can be as large
as 3 orders of magnitude.

The behaviours shown in Fig. 10, which have been
obtained by a numerical integration of the Boltzmann
equation Eq. (31), can be understood by employing the
approximate analytical solution (35). In the case of
〈σannv〉 = a, Eq. (35) gives:

1

Y0
= G m G(xGR

f )
a

xGR
f

(38)

in the standard GR case, and

1

Y0
= G m

[

G(xST
f )

Ā

a

1.82

(

1

(xST
f )1.82

−
1

(xϕ)1.82
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+ G m
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a
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]
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:
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=
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45G
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∫ ∞
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dx
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x2
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where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√

π

45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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FIG. 7: Numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology for a toy–model of a DM WIMP
of mass m = 50 GeV and constant annihilation cross-section
〈σannv〉 = 1×10−7 GeV−2. The temperature evolution of the
WIMP abundance Y (x) clearly shows that freeze–out is an-
ticipated, since the expansion rate of the Universe is largely
enhanced by the presence of the scalar field ϕ. At a value
x = m/Tϕ a re–annihilation phase occurs and Y (x) drops to
the present day value.

additional temperature dependence, given by the func-
tion A(ϕ). This can be translated in a change in the
effective number of degrees of freedom at temperature T :

g!(x) −→ A2(x)g!(x) (34)

An approximated solution of Eq.(31) can be cast in a
form analogous to the standard case:

1

Y0
=

1

Yf
+

√
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45G
m

∫ ∞

xf

dx
A−1(x)G(x)〈σannv〉

x2
(35)

where G(x) = h!(x)/g1/2
! (x) and Y0 and Yf are the

WIMP abundances per comovin volume today and at
freeze–out, respectively. The freeze–out temperature is
obtained by the following implicit equation:

xf = ln

[

0.038 MP g m
〈σannv〉f x−1/2

f

A(xf )g1/2
! (xf )

]

(36)

where g is the internal number of degrees of freedom of
our WIMP. Clearly, when A(x) → 1 we recover the stan-
dard case. The relic abundance is then simply given by:

Ωh2 =
m s0 Y0

ρcrit
(37)

where s0 is the present entropy density and ρcrit denotes
the critical density.

A numerical solution of the Boltzmann equation
Eq. (31) in a ST cosmology with the function A(x) given
in Fig. 6 is shown in Fig. 7 for a toy–model of a DM
WIMP of mass m = 50 GeV and constant annihilation
cross-section 〈σannv〉 = 1 × 10−7 GeV−2. The temper-
ature evolution of the WIMP abundance Y (x) clearly
shows that freeze–out is anticipated, since the expansion
rate of the Universe is largely enhanced by the presence
of the scalar field ϕ. This effect is expected. However,
we note that a peculiar effect emerges: when the ST
theory approached GR (a fact which is parametrized by
A(ϕ) → 1 at a temperature Tϕ, which in our model is 0.1
GeV), H̃ rapidly drops below the interaction rate Γ es-
tablishing a short period during which the already frozen
WIMPs are still abundant enough to start a sizeable
re–annihilation. This post-freeze–out “re–annihilation
phase” has the effect of reducing the WIMP abundance,
which nevertheless remains much larger than in the stan-
dard case. For the specific case shown in Fig. 7 the WIMP
relic abundance is Ωh2 = 0.0027 for GR, while for a ST
cosmology becomes Ωh2 = 0.12, with an increase of a
factor of 44.

The phenomenon of re–annihilation can be conve-
niently discussed in terms of the relation between the
expansion rate of the Universe H̃ and the WIMP inter-
action rate Γ = Y s 〈σannv〉. A numerical calculation of
these two quantities is plotted in Fig. 8 as a function
of the temperature. The departure from equilibrium oc-
curs earlier than in the GR case, because H̃ & H̃GR.
When decoupling is completed, the particles evolve with
an approximately constant Y = Yf and Γ ∼ T 3, while
the Hubble rate evolves as H̃ ∼ A(x) ρ̃1/2 ∼ T 1.2, i.e.
slower than in the standard case (we have used here the
approximate A(x) behavious of Eq.(32)).

At the transition temperature Tϕ the Hubble rate
drops to its standard value HGR and becomes smaller
than the interaction rate: in this case the decoupled
WIMPs start to annihilate again, for a short period. Af-
ter this re–annihilation phase, the particles continue to
evolve with an approximately constant abundace Y < Yf

and Γ recovers the behaviour T 3, while H̃GR ∼ ρ̃1/2 ∼ T 2

as usual.
We notice that a re–annihilation phase does not occur

in the case of kination, i.e. in the case the energy den-
sity of the Universe is dominated by the kinetic term of a
scalar field [15]. In this case the evolution of the expan-
sion rate is H̃kin ∼ T 3 during kination, and than evolves
smootly into the standard behaviour H̃GR ∼ T 2. Dur-
ing kination both H̃ and Γ have the same T –dependence
and closely follow each other, until kination ends and the
standard behaviour is recovered. Re–annihilation is pos-
sibile if the phase during which the expansion rate has
the transition toward its standard GR behaviour is faster
than the post-freeze–out evolution of the interaction rate,
i.e. faster than T 3.

The change in the freeze–out temperature is shown in
Fig. 9 where we show the ratio between the freeze–out
values of xf = m/Tf in ST cosmology and in GR. The
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• Particles which were not considered suitable to 
play a significant role in CDM scenarios can be 
rescued because of their enhanced number 
density. 

• While particles (regions of the parameter space 
for given WIMP candidate), which in usual GR 
scenarios are promising CDM candidates, would 
be excluded because their boosted number would 
overclose the Universe. 

• What can we learn about Dark D-brane models 
of coupled DM/DE?



Summary 

• Coupled DM/DE models are attractive solution 
to coincidence problem

• Disformal coupling between D-brane matter 
and DE offers an interesting possibility: 
coupling is dictated by theory

• Assessing early time consequences important 
for DM searches and to constraint parameters 
of Dark D-brane model 


