Primordial Black Holes, Dark Matter, and the Post-Inflationary Universe

Scott Watson

Syracuse University

"Non-thermal WIMPs and Primordial Black Holes" with Julian Georg and Gizem Sengor [arXiv: 1603.00023]

Also based on work in progress with Julian, Bhaskar, and Louis.

See also talk tomorrow by Yu Gao.

Astrophysical Black Holes

Astrophysical Black Holes can form from collapsed stars. They can be detected by their jets, gamma-ray bursts, and effect on stellar orbits.

$$M_{\odot} \lesssim M_{BH} \lesssim 10^{10} M_{\odot}$$

 $M_{\odot} \simeq 10^{33} \text{ g}$

PBHs can (Hawking) evaporate before today.

$$t_{\rm evap} \simeq 6.7 \times 10^{17} \left(\frac{M_{\rm PBH}}{10^{15} {\rm g}}\right)^3 {\rm s}$$

Primordial Black Holes

PBHs formed in the early universe from collapse of density perturbations. They can lead to relics, providing all or part of the dark matter.

$$m_p \simeq 10^{-6} \mathrm{g} \lesssim M_{PBH}$$

Conclusions

Primordial Black Holes (PBHs) can provide rigid constraints on the post-inflationary / pre-BBN cosmic history.

PBHs restrict the primordial power spectrum on a wide range of scales (beyond CMB and Structure formation (LSS) probes).

Provocative Conclusion:

PBHs could be all or part of the dark matter and LIGO may have detected the first "self-annihilation" signal!

Planck provides high precision data to probe the early universe

A strictly thermal history can not account for the data!

When did the universe thermalize?

Planck constraints are prior dependent (Bayesian Approach)

Immediate Thermalization

Delayed Thermalization (non-thermal history)

Alternative Histories are Possible

Thermal History

Alternative History

Non-Thermal Histories Are Well Motivated

"Cosmological Moduli and the Post-Inflationary Universe: A Critical Review "

with Kuver Sinha and Gordon Kane [arXiv: 1502.07746]

Experimental:

CMB and Inflation (Planck) Many inflationary models favor non-thermal history.

Lack of thermal WIMP detection

Recombination Constraints (Planck) Thermal WIMPs in tension

Non-Standard History -> New Phenomenology

Non-Thermal Histories Are Well Motivated

"Cosmological Moduli and the Post-Inflationary Universe: A Critical Review "

with Kuver Sinha and Gordon Kane [arXiv: 1502.07746]

Experimental:

CMB and Inflation (Planck) Many inflationary models favor non-thermal history.

Lack of thermal WIMP detection

Recombination Constraints (Planck) Thermal WIMPs in tension

Non-Standard History —> New Phenomenology

Theoretical:

Beyond Standard Model (BSM) Physics often favors non-thermal histories. (Example: Efforts to address the EW hierarchy problem lead to shift symmetric scalars leading to a matter phase prior to BBN)

Inflationary Reheating:

Transfer of energy from inflationary sector to Standard Model and hidden sectors (BSM / dark matter) can lead to prolonged matter domination.

Early Matter Domination and Structure Growth

1106.0536 A. Erickcek and K Sigurdson 1405.7373 with JiJi Fan and Ogan Ozsoy

Early Matter Domination and Structure Growth

1106.0536 A. Erickcek and K Sigurdson 1405.7373 with JiJi Fan and Ogan Ozsoy

Structures grow in a Matter Dominated Universe

$$c_{s}^{2} = 0$$

Perturbations Grow in a Matter Dominated Universe

Scalar Power Spectrum

$$P(k) = \mathcal{A}_s \left(\frac{k}{k_*}\right)^{n_s - 1}$$

The Power Spectrum is probed by observations over about 4 decades

Most Structures grow after radiation / matter equality

Primordial Origin of the Power Spectrum

Primordial Origin of the Power Spectrum

Primordial Origin of the Power Spectrum

What is the Power Spectrum on other scales?

PBHs formed in the early universe from <u>collapse of density perturbations</u>. They can lead to relics, providing all or part of the dark matter.

 $m_p \simeq 10^{-6} \mathrm{g} \lesssim M_{PBH}$

PBH Formation in a Thermal Universe

Original work by Carr and Hawking (many refinements since that time).

PBH's would form from large density perturbations in tail of Gaussian distribution

 $\delta_M \sim \mathcal{O}(1)$

After non-linearity reached, mass breaks away from expansion, PBHs can form.

PBH Formation in an Early Matter Phase

Work of Zeldovich, Peebles, Doroshkevich, Khlopov, Polnarev, and others.

Matter Domination

Non-linearity does not guarantee PBH formation!

$$\beta(M) \simeq 2 \times 10^{-2} \,\delta_M^{13/2}$$

Key Points:

Spherical collapse (no angular momentum), Density and velocity perturbations initially Gaussian.

PBH Mass Range from an Early Matter Phase

Low Mass Region

Matter phase begins at $H_{osc} \simeq m_{\sigma}$

No sub-horizon growth yet, only possibility is collapse of entire Hubble patch into a PBH.

$$3H_{osc}^2 m_p^2 = \rho_{PBH} = M_{PBH} H_{osc}^{-3}$$

$$M_{min} = 3\frac{m_p^2}{m_\sigma}$$

PBH Mass Range from an Early Matter Phase

High Mass Region

Solve this equation implicitly for mass

$$M_{max} \sim \left(\frac{M_{cmb}}{m_p}\right)^{\frac{n-1}{n+3}} \left(\frac{m_p}{m_\sigma}\right)^{\frac{12}{n+3}} m_p$$

$$Duration of matter phase determines maximal mass$$

$$T_r^2 \sim \frac{m_\sigma^3}{m_p}$$

Observational Constraints

0912.5297 Carr, et. al.

These constraints need updated! (work in progress with Julian, Bhaskar and Louis) For CMB update (thermal PBHs) see Yu's talk tomorrow.

Observational Constraints

"Non-thermal WIMPs and Primordial Black Holes" 1603.00023 with Julian Georg, Gizem Sengor

Strongest constraints on 10^{14 - 15} g PBHs Blue tilt for the primordial power spectrum disfavored.

Strongest constraints on 10¹⁵ g PBHs

Blue tilt for the primordial power spectrum disfavored.

"Non-thermal WIMPs and Primordial Black Holes" 1603.00023 with Julian Georg, Gizem Sengor and work in progress with Julian, Bhaskar, and Louis

Adapted from Carr, Gilbert, and Lidsey, PRD 50, 4853

Did LIGO see PBH Dark Matter?

1603.00464 Bird, et. al.; 1603.08338 Sasaki, et. al.; 1605.01405 Raccanelli, et. al.

"GW150914"

LIGO detected a gravity wave signal consistent with the merger of two $\sim 30~M_{\odot}$ Black holes at around a billion Lyr away

Dark Matter Interpretation

Constraints weaken if PBHs are not all of the dark matter.

1603.08338 Sasaki, et. al.;

Did LIGO see PBH Dark Matter?

1603.00464 Bird, et. al.; 1603.08338 Sasaki, et. al.; 1605.01405 Raccanelli, et. al.

Dark Matter Interpretation

 $10 M_{\odot} \lesssim M \lesssim 100 M_{\odot}$

Key is BH Merger rate:

 $2-53 {\rm ~Gpc^{-3} yr^{-1}}$ (LIGO)

Did LIGO detect dark matter?

Simeon Bird Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹ ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

BH Formation? BH Origin?

1605.01405 Raccanelli, et. al.

Non-Standard Histories and an Interesting Coincidence

Large entropy

Work in progress with Julian, Bhaskar, and Louis

Dark Matter Interpretation

 $10 M_{\odot} \lesssim M \lesssim 100 M_{\odot}$

Conclusions

Primordial Black Holes (PBHs) can provide rigid constraints on the post-inflationary / pre-BBN cosmic history.

PBHs restrict the primordial power spectrum on a wide range of scales (beyond CMB and Structure formation (LSS) probes).

Provocative Conclusion:

PBHs could be all or part of the dark matter and LIGO may have detected the first "self-annihilation" signal!

Backup Slides

Perturbations Grow in a Matter Dominated Universe

Planck (2015)

Planck Favors Different Histories for Different Inflationary Models

Instant Re	eheating	Histo	rv 1	Histor		
	Instant Reheating		History 1		History 2	
$\ln[\mathcal{E}/\mathcal{E}_0]$	$\Delta \chi^2_{eff}$	$\ln[\mathcal{E}/\mathcal{E}_0]$	$\Delta \chi^2_{eff}$	$\ln[\mathcal{E}/\mathcal{E}_0]$	$\Delta \chi^2_{eff}$	
-14.9	25.9	-18.8	27.2	-13.2	17.4	
-4.7	5.4	-7.3	6.3	-6.2	5.0	
-4.1	3.3	-5.4	2.8	-4.9	2.1	
-4.7	5.1	-5.2	3.1	-5.2	2.3	
-6.6	5.2	-8.9	5.5	-8.2	5.0	
-7.1	6.1	-9.1	7.1	-6.6	2.4	
-4940.7	9808.4					
	$\frac{\ln[\mathcal{E}/\mathcal{E}_0]}{-14.9} \\ -4.7 \\ -4.1 \\ -4.7 \\ -6.6 \\ -7.1 \\ -4940.7$	$\begin{array}{c c} \ln[\mathcal{E}/\mathcal{E}_0] & \Delta \chi^2_{eff} \\ \hline -14.9 & 25.9 \\ -4.7 & 5.4 \\ -4.1 & 3.3 \\ -4.7 & 5.1 \\ -6.6 & 5.2 \\ -7.1 & 6.1 \\ \hline -4940.7 & 9808.4 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

History 1 (Blue)

$$T_r = 10^8 \text{ GeV}$$
$$w_{eff} = -1/3 \dots 1/3$$

History 2 (Grey)

$$T_r = 700 \text{ GeV}$$
$$w_{eff} = -1/3 \dots 1$$

