

Reorganization of East Area

Beam Lines

Status Report at ATOP meeting

L.Gatignon, 06/03/2009

OUTLINE:

- Motivation
- Guiding principles and strategy

Constraints from physics programme

Contain radiation

Magnets available

Primary beams

Optimize choice of magnets DIRAC, Irradiation facilities

Test beams

Optics, layout Performance

Practical implementation

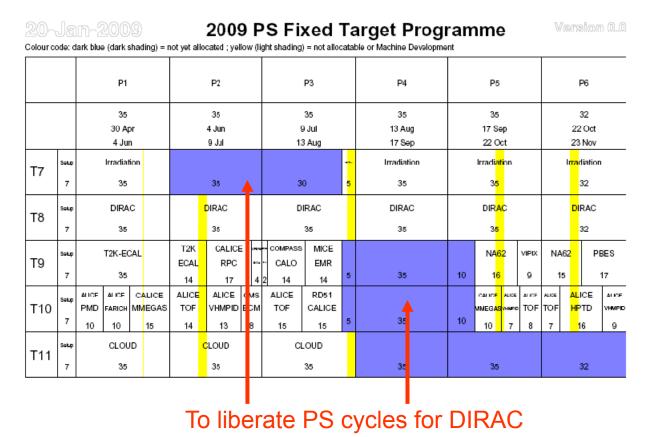
Magnets Shielding

- □ Time line
- Conclusions

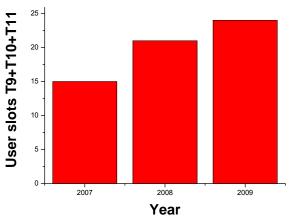
WHY A NEW LAYOUT FOR THE EAST AREA

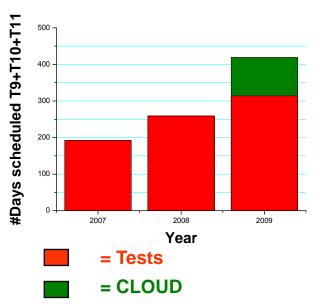
Triggered by ABOC/ATC days in 2007

- Splitters lead to high beam losses in critical regions
 - high radiation levels
 - no beam loss monitors!
- Catastrophic situation of magnets
 - 63 magnets of **22 different types**, many critically weak and/or **no spares**
 - need 2 weeks to open & close concrete roof shield + cooldown + repair
 - space very tight, access extremely difficult
 - high radiation levels
 - EA has only 8% of #magnets in NA, but needs same #FTE to maintain
- No remote control for most systems (motors in particular)


No high level control system, no beam files

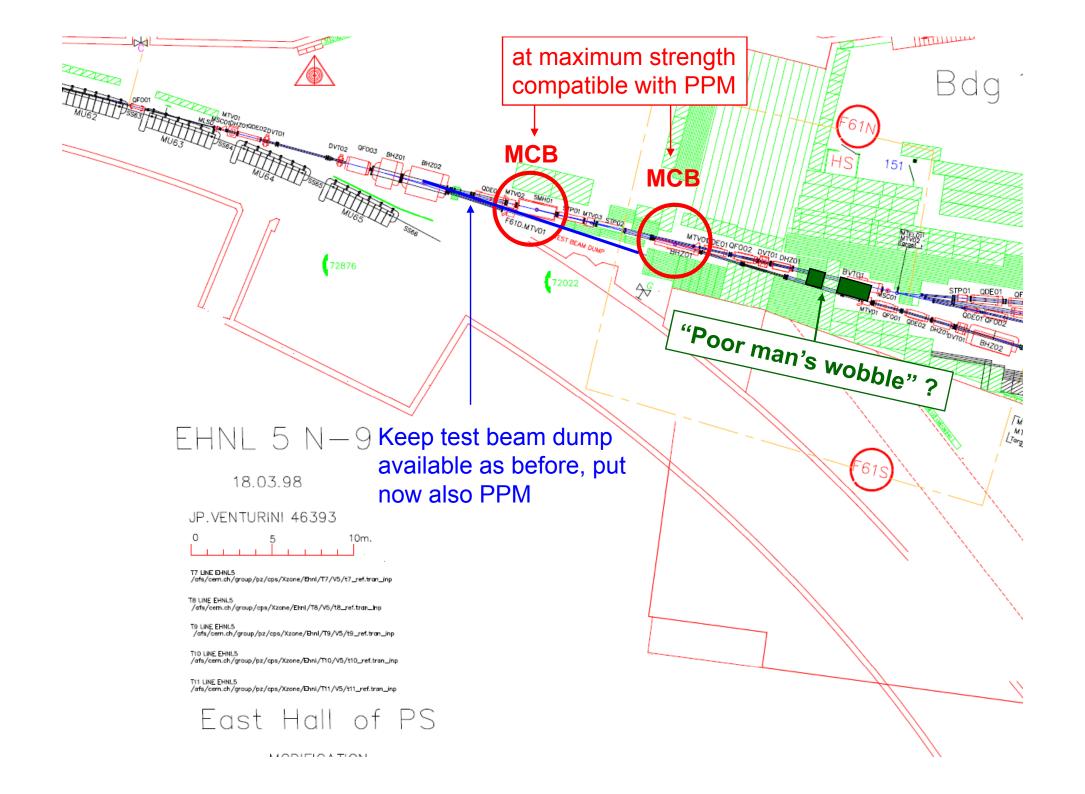
Grossly insufficient beam instrumentation – somewhat improved since then


Recommendation: global review of East Area


Note: Operational difficulties with F61N.BVT01 in 2008, T10 only 6 GeV due to two Q800 (smoke traces!), three Q120's being replaced now...

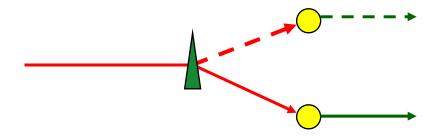
THE EAST AREA CONTINUES TO BE POPULAR:

and still requests being added, due to pressure on beam time!



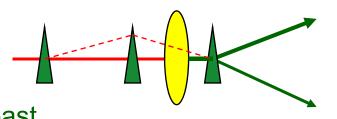
BASIC PRINCIPLES FOR NEW EAST AREA

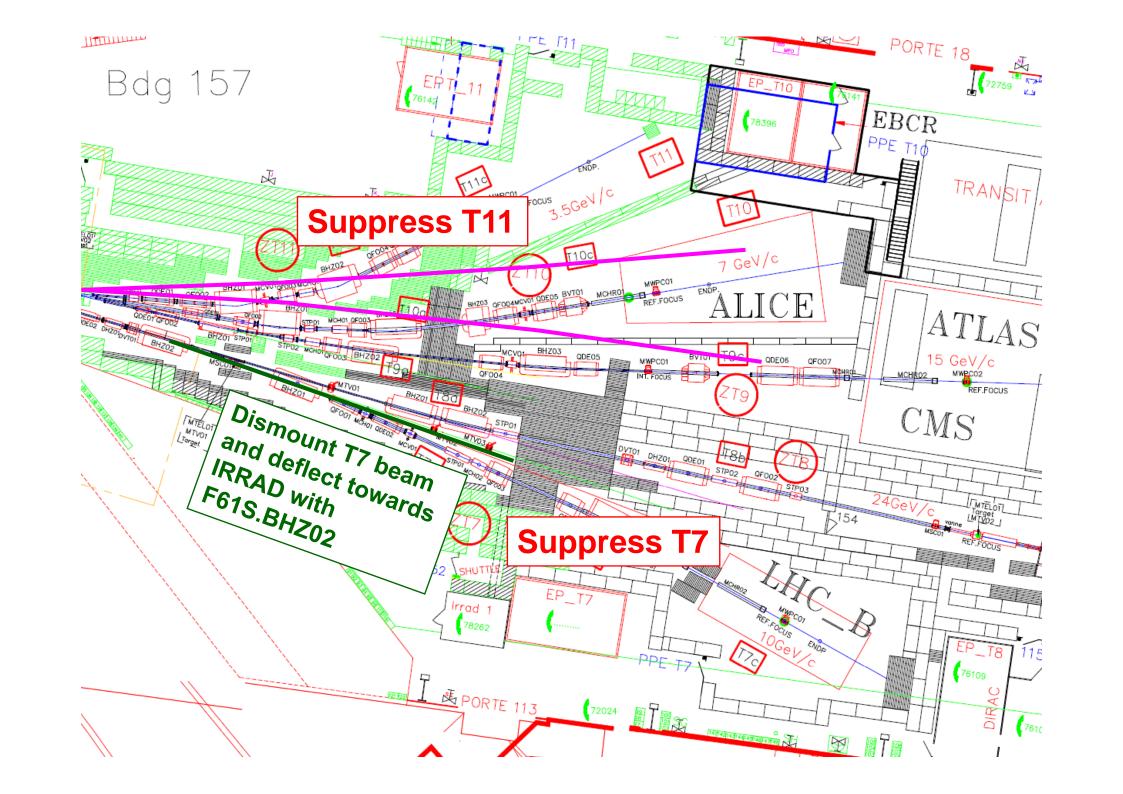
- ☐ Use fewer types of **reliable magnets** with spares
- □ Reduce roof shielded areas and ease access to equipment
- Keep radiation restricted to upstream areas as much as possible
- Keep T8 beam and DIRAC installed as it is until the end of DIRAC, or for IRRAD in case they take over the DIRAC location
- □ Replace SMH1 and F61S.BHZ1 by two MCB magnets in PPM mode, i.e. no more splitter (F61S.BHZ01 replacement already done).
- Could also serve IRRAD as now, through air, however not from ZT7.BHZ01 but from F61S.BHZ02
- □ **Design new beam(s)** to 1 (or 2) "North target" marguerite(s)
 - two decoupled beams, but at the cost of cycle efficiency
 - two beams coupled by "wobbling station", coupled but higher cycle efficiency
- Test beams can provide **pure** hadron and muon secondary beams up to 15 GeV/c and pure (> 95%) electron beams from γ conversion (up to about 10 GeV/c)

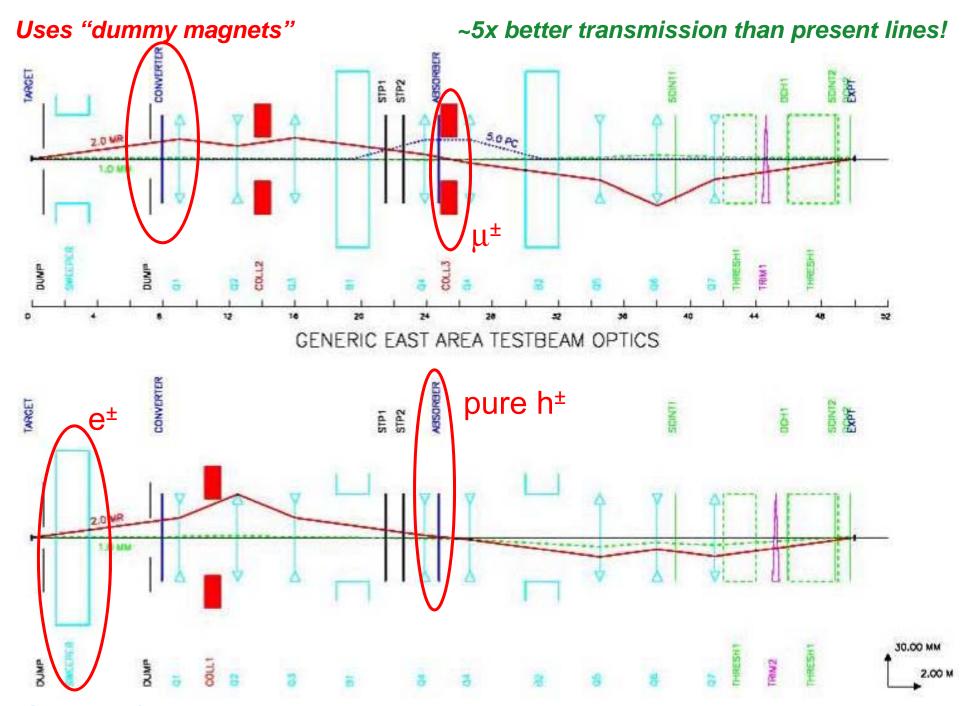

Inspired by and similar in spirit to West Area rebuild in the end of the 1990's!

End of primary beam:

1. Switch Concentrate on this option for the moment


Loss of cycle efficiency, but two performing, decoupled test beams




or

2. Wobbling

2x better cycle efficiency
but some coupling.
Can run as in the past
(i.e. on fixed axis), but with
same restrictions as in the past

MAGNETS

List of magnets available for the new area (only the green ones).

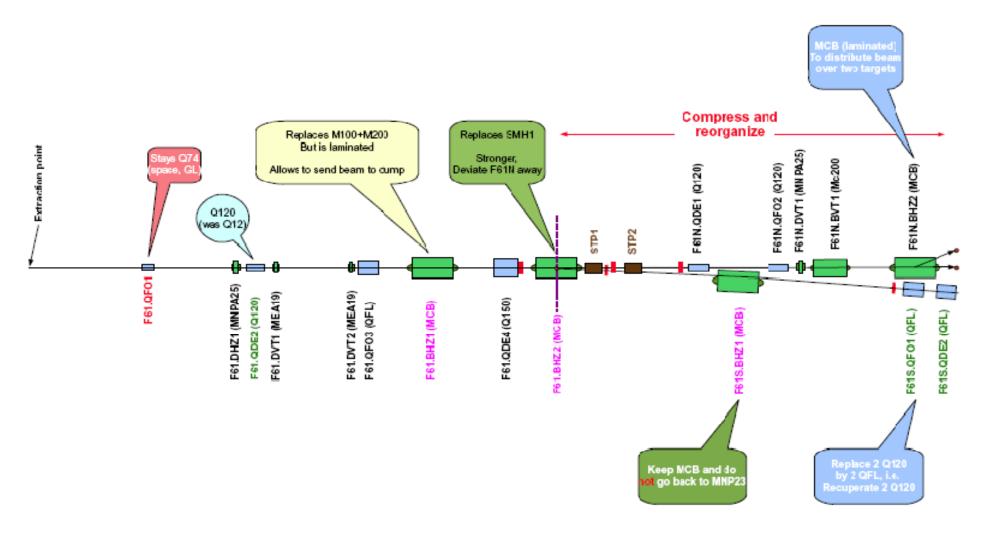
Also documentation!

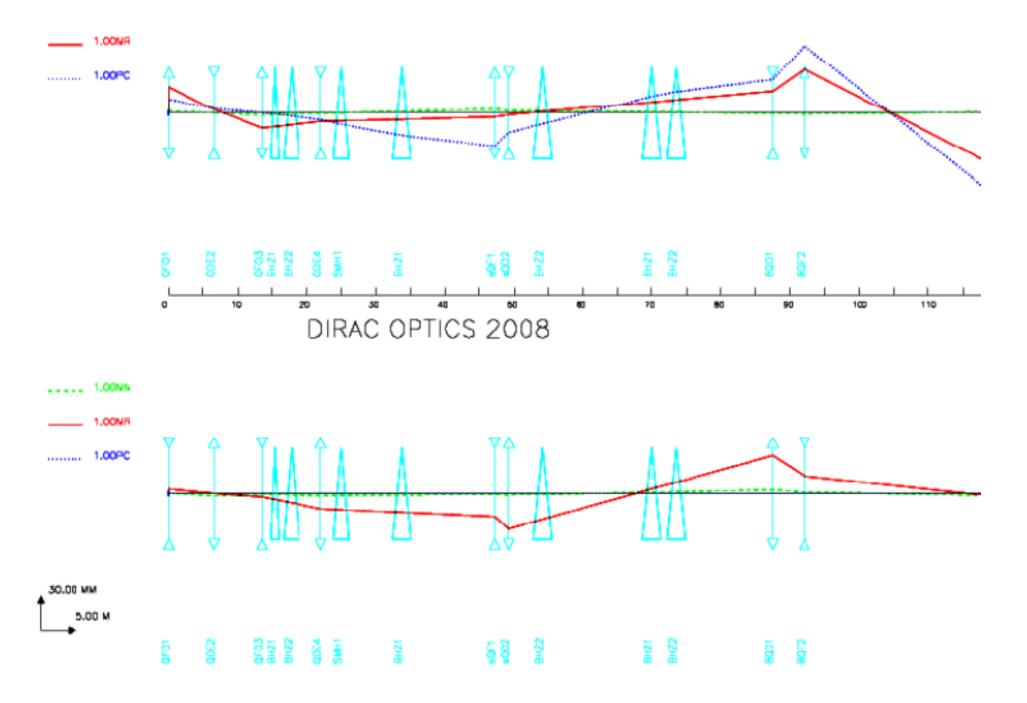
Could eventually be complemented with magnets from NA stock (?)

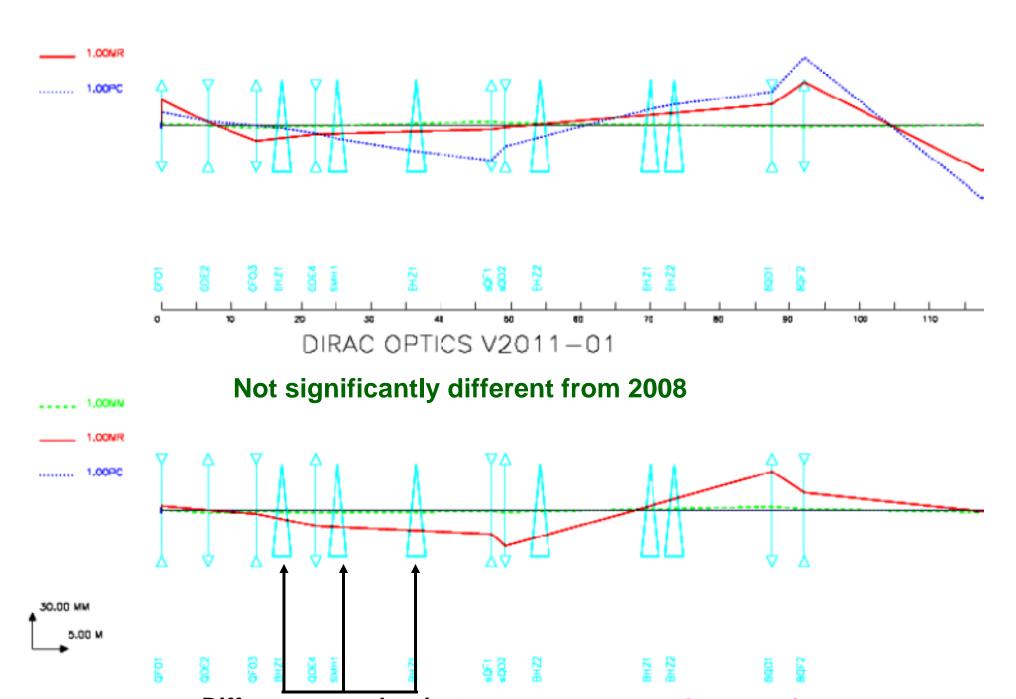
Received on 30/09/2008

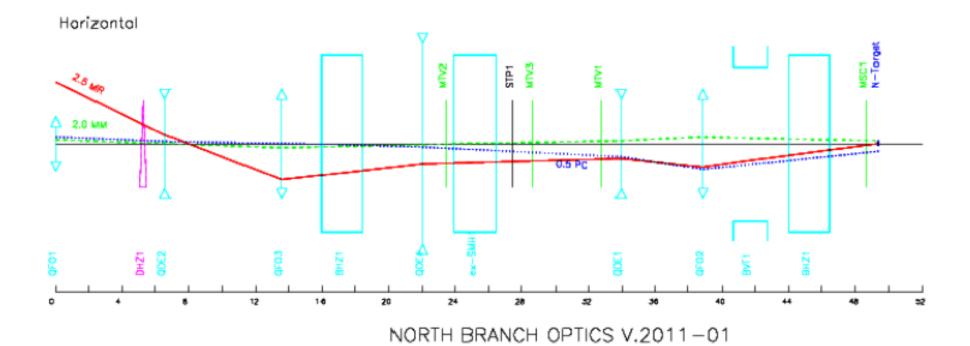
code check	Total magnets available	Specifications	Magnetic measurements	
		edms#	edms#	
HB2; MCB	10	864252	864160 / 865818	
M100SP	4	864253	864162	
M105	3	-	864169	
M200SP	10	864255	864165 / 864162	
MC200	7	864257	864168	
MEA19	8	864171	864172	
MNPA25	6	-	-	
MNPA30	7	-	-	
Q100	17	864260	864174	
Q120	7	864262	864176	
Q200	5	864260	864174	
Q600	9	864263	-	
QFL	5	864259	-	
QFS	10	864259	-	
QDS	12	864259	•	
MDX	10		966185	
ME 15	3	966180	-	
MNP19	1			
MNP23	6			
HB1, MCA	2			
HB4I	1			
HB4r	1			
B190 (ATP)	2			
F056	1			
M45	1			
MEA43	3			
MNPA38	1			
Q12	4			
Q74	2			
Q800	2			
M100TP	2			
M45	1			
Q50	2			

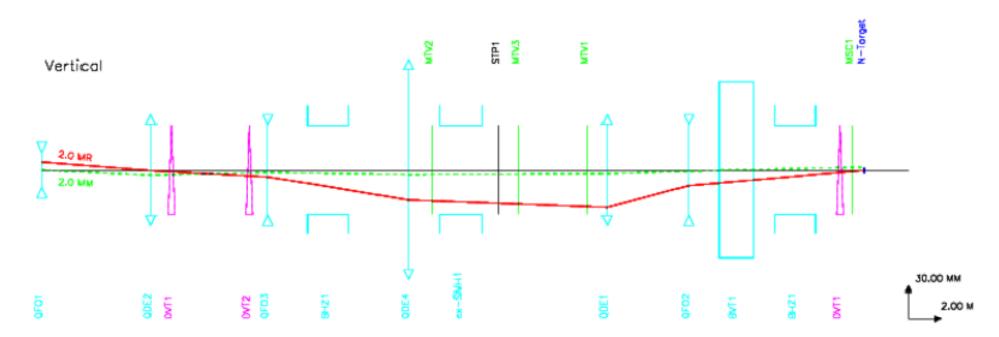
Please note that this list is based on huge efforts (over about one year!) by the TE/MCS team (D.Bodart, D.Tommasini et al), including a test campaign of ≈100 spare magnets in T7 zone

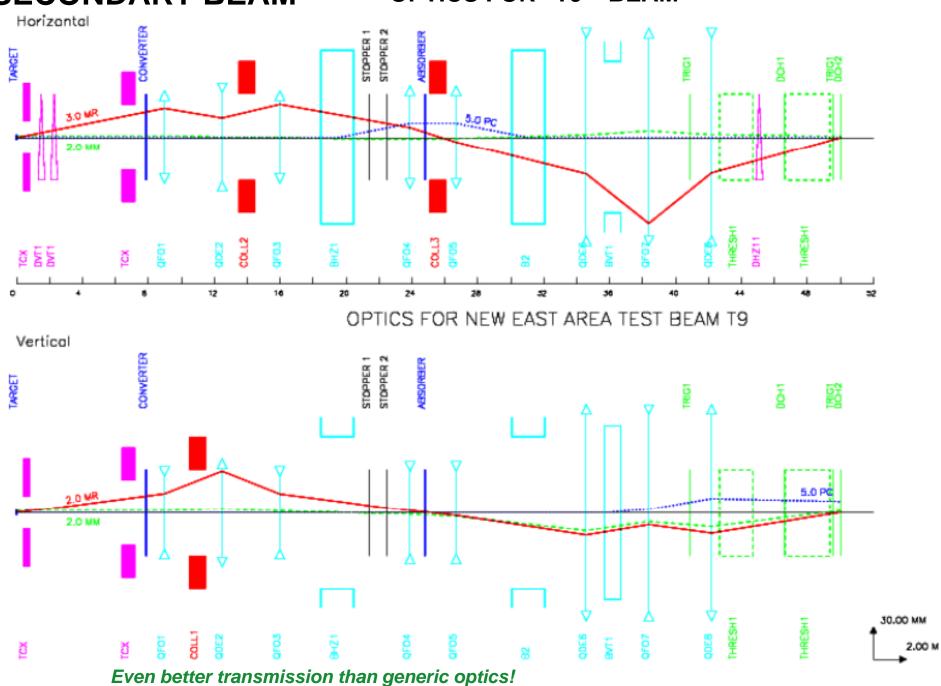

Start with the primary beams

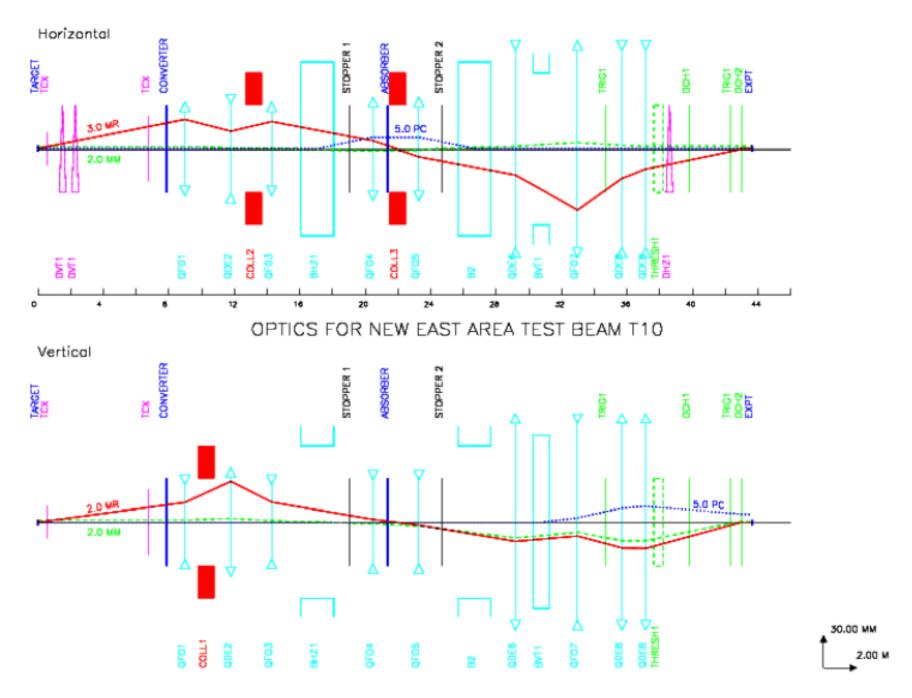

- As short as possible
- Compatibility as much as possible with DIRAC
- □ Respect list of magnets wherever possible i.e. no MNP23, few M105, few narrow magnets!
- Maximize lateral separation between beam lines
- ☐ Try to have primary target(s) in isolated zone (RP-wise)

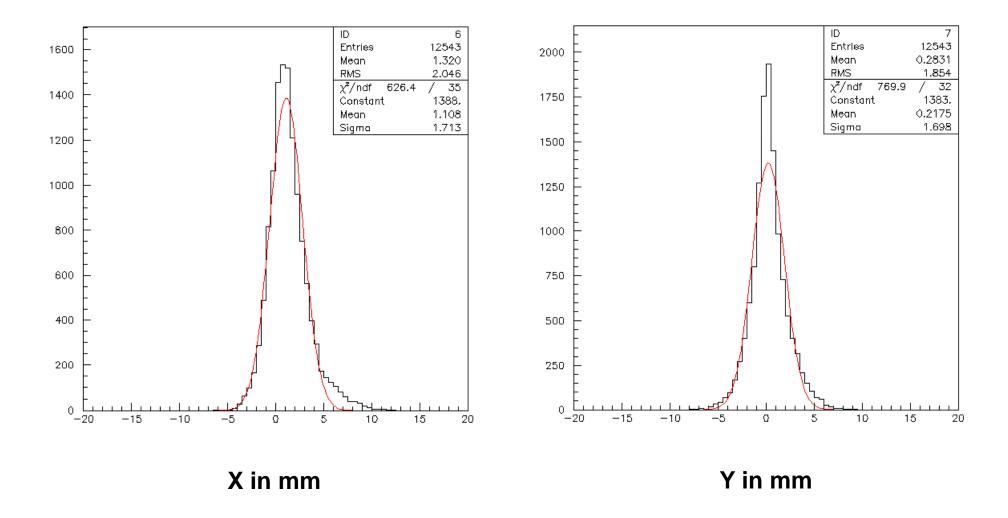

Make coherent 'Beatch' files from extraction to targets (Dirac, North) and consistent optics files, describing correctly phase space from extraction:

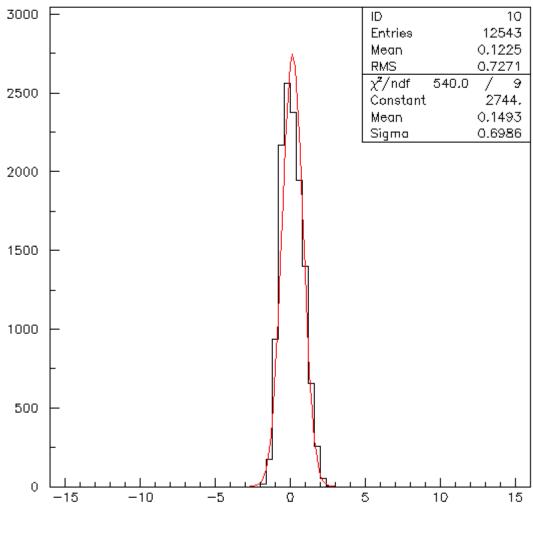

dirac2011, north2011 *old files: dirac2008, north2008* t9y2011, t10y2011


SCHEMATIC LAYOUT OF NEW EAST AREA PRIMARY BEAM FRONTENDS



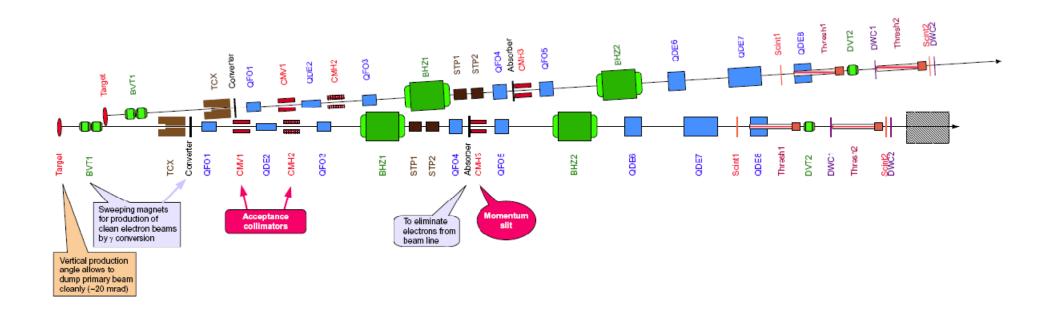


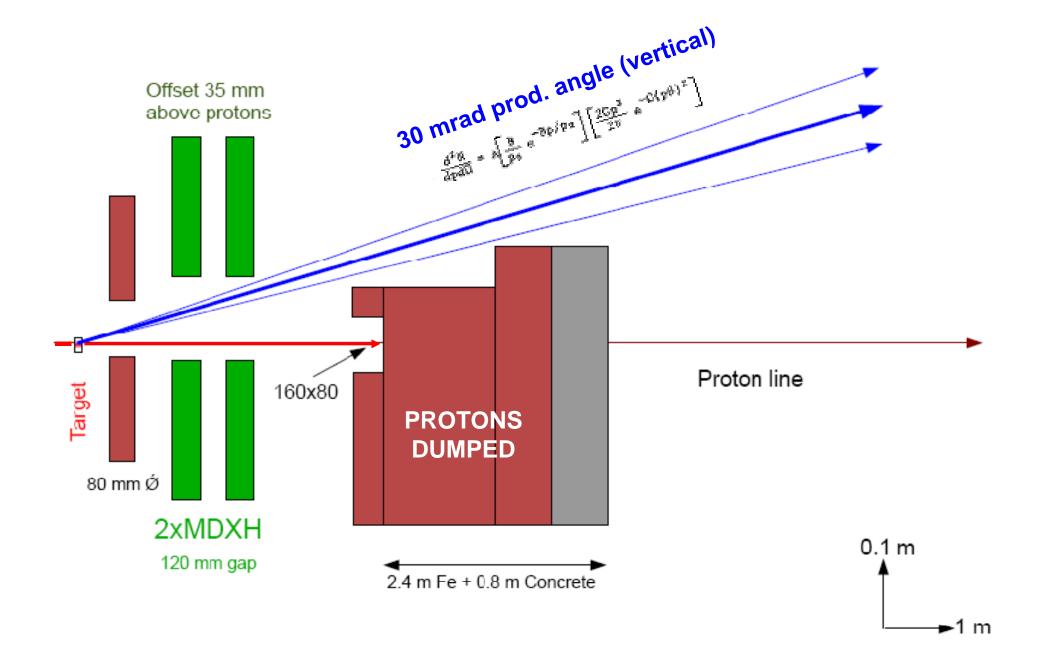

SECONDARY BEAM → OPTICS FOR "T9++ BEAM"



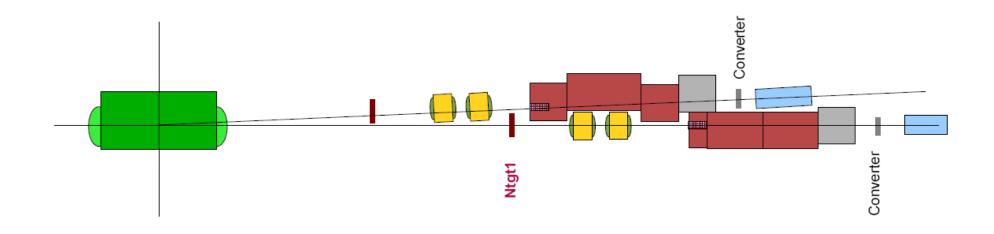
SECONDARY BEAM OPTICS FOR "T10++ BEAM"

TURTLE SIMULATION (for $C1_{ACCV} = C2_{ACCH} = \pm 40$ mm, $C3_{\Delta P} = \pm 1$ mm)





 $\Delta p/p$ in %


SCHEMATIC LAYOUT OF THE TWO SECONDARY BEAMS

(inspired by "West Area 2000" approach)

Top view of shielding after North targets in East Area

Magnets for new East Area

Туре	# Avail	Locations where used					Used	#Spares				
MCB	10	BP.BHZI	BP.SMH1	BS.BHZ1	BS.BHZ2	BD.BHZ1	BD.BHZ2	BP.BHZ1	BN.BHZ2	+Spares at SPS	8	2
M100SP	4	B1.BVT1	B2.BVT1								2	2
M105	3	BS.DHZ1	BN.DHZ1								2	1
M200SP	10	B1.BHZ1	B1.BHZ2	B2.BHZ1	B2.BHZ2						4	6
MC200	7	BN.BVT1									1	6
MEA19	8	BP.DVT1	BP.DVT2								2	6
MNPA25	6	BP.DHZ1	BN.DVT1								2	4
MNPA30	7	BS.DVT1	BD.DVT1								2	5
Q100	17	B1.QDE6	B1.QDE8	B2.QDE6	B2.QDE8	B2.QDE8b					5	12
									Sp	ares at SPS		
Q120	7	BP.QDB02	BN.QDE1	BN.QFO2	B1.QDE2	B2.QDE2					5	2
Q200	5	BD.QDE1	BD.QFO2	B1.QF07	B2.QF07			Sp	ares at S	PS	4	1
Q600	9	BP.QDE4									1	8
QFL	5	BP.QFO03	BS.QFO1	BS.QDE2							3	2
QFS	10	B1.QFO4	B1.QFO5	B2.QFO4	B2.QFO5						4	6
QDS	12	B1.QFO1	B1.QFO3	B2.QFO1	B2.QFO3						4	8
Q74	2 (?)	BP.QFO01									1	1
MDX	10	B1.DVT1a	B1.DVT1b	B2.DVT1a	B2.DVT1b	B1.DHZ1	B2.DHZ2				6	4
MEJ15	3										0	3

BP = Primary line BD = DIRAC beam line BN=North branch BS=South branch B1 = Secondary beam #1

B2 = Secondary beam #2

Green shading = spares
Red shading = unavailable

POWER SUPPLY REQUIREMENTS PRIMARY BEAMS

Magnet	I _{max} [A]	V _{max} [V]	Rectifier		
PRIMARY LINE					
BP.QFO1	650		R2g.07		
BP.DHZ1	600	60	R2.08		
BP.QDE2	400	80	R1.15		
BP.DVT1	250	70	R1.17		
BP.DVT2	250	70	R1.16		
BP.QFO3	400	40	R2.14		
BP.BHZ1	600	120	R2.03		
BP.QDE4	350	140	R2b.06		
	SOUTH B	RANCH			
BS."SMH1"	500	100	R3.07		
BS.BHZ1	300	50	R3.02		
BS.QFO1	400	40	R2b.05		
BS.QDE2	400	40	R2a.25		
BS.DHZ1	180*		T1b.01pp		
BS.DVT1	600	80	R2g.02		
BS.BHZ2	800	150	R2a.20		

Magnet	I _{max} [A]	V _{max} [V]	Rectifier				
DIRAC LINE							
BD.BHZ1	400	80	R2.10				
BD.BHZ2	400	80	R2g.04				
BD.DVT1	200	40	R2b.07				
BD.DHZ1	480*	30	T1b.03				
BD.QDE1	500	100	R2a.28				
BD.QFO2	500	100	R2a.22				
SPECTRO	2500		R6.01				
	NORTH BRANCH						
BN.QDE1	250	50	R10.02				
BN.QFO2	300	60	R2b.08				
BN.DVT1	400*	60	R1.14				
BN.BHZ2	800	100	R2g.05				
BN.BHZ3	880	200	R3.08				

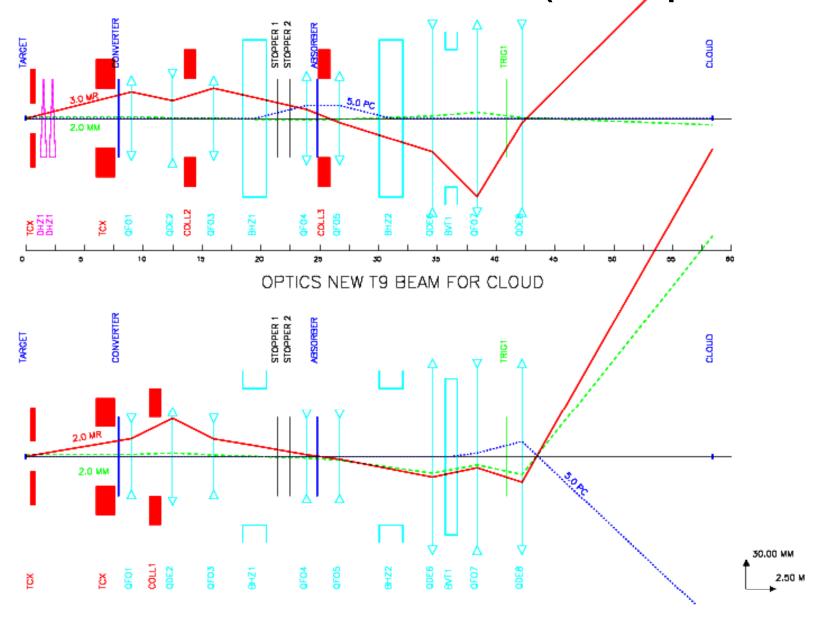
^{*)} Same limit as before

green = as before

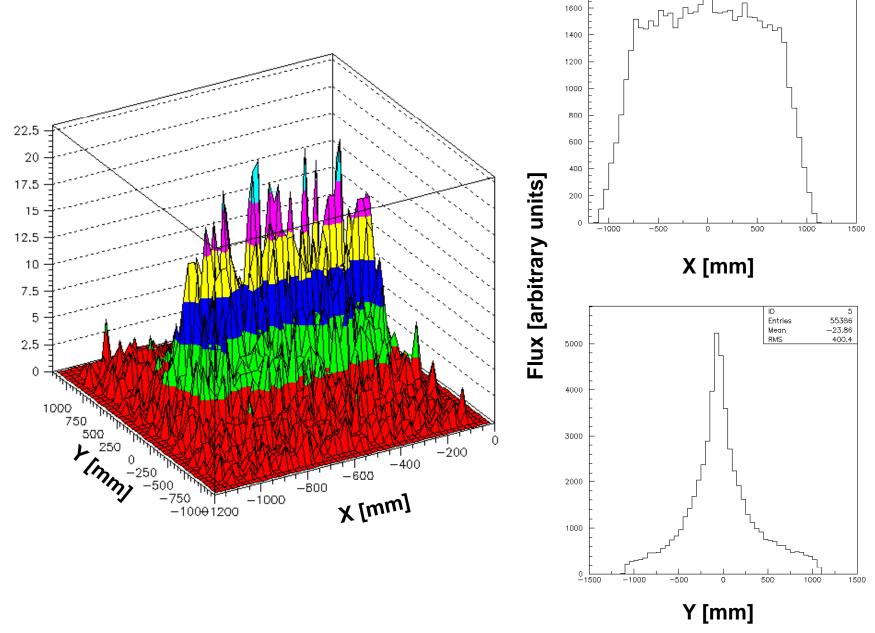
red = swapped with other elements

POWER SUPPLY REQUIREMENTS SECONDARY BEAMS

Magnet	I _{max} [A]	V _{max} [V]	Rectifier			
"T9 BEAM"						
T9.DHZ1	240	150	R2g.03			
T9.QFO1	350	25	R2.17			
T9.QDE2	350	80	R2a.23			
T9.QDE3	350	25	R2g.01			
T9.BHZ1	600	150	R2b.01			
T9.QFO4*	350	30	R2g.08			
T9.QFO5*	350	30	R2g.10			
T9.BHZ2	600	150	R2.09			
T9.QDE6	700	150	R2.06			
T9.BVT1	450	120	R2.12			
T9.QFO7	600	120	R2.15			
T9.QDE8	700	150	R2.16			
T9.DHZ1	240	80	R2.07			
T9.DVT2	240	80	R2.04			


Magnet	I _{max} [A]	V _{max} [V]	Rectifier			
"T10 BEAM"						
T10.DHZ1	240	150	R2a.27			
T10.QFO1	400	30	R2.01			
T10.QDE2	450	80	R2.11			
T10.QDE3	400	30	R3.05			
T10.BHZ1	750	200	R3.04			
T10.QFO4*	500	50	R1.18			
T10.QFO5*	500	50	R2g.09			
T10.BHZ2	750	200	R3.03			
T10.QDE6	600	150	R2.13			
T10.BVT1	600	150	R2b.04			
T10.QF07	600	150	R2.05			
T10.QDE8	400	160	R2.18			
T10.DHZ1	240	80	R2a.21			
T10.DVT2	240	80	R2g.06			

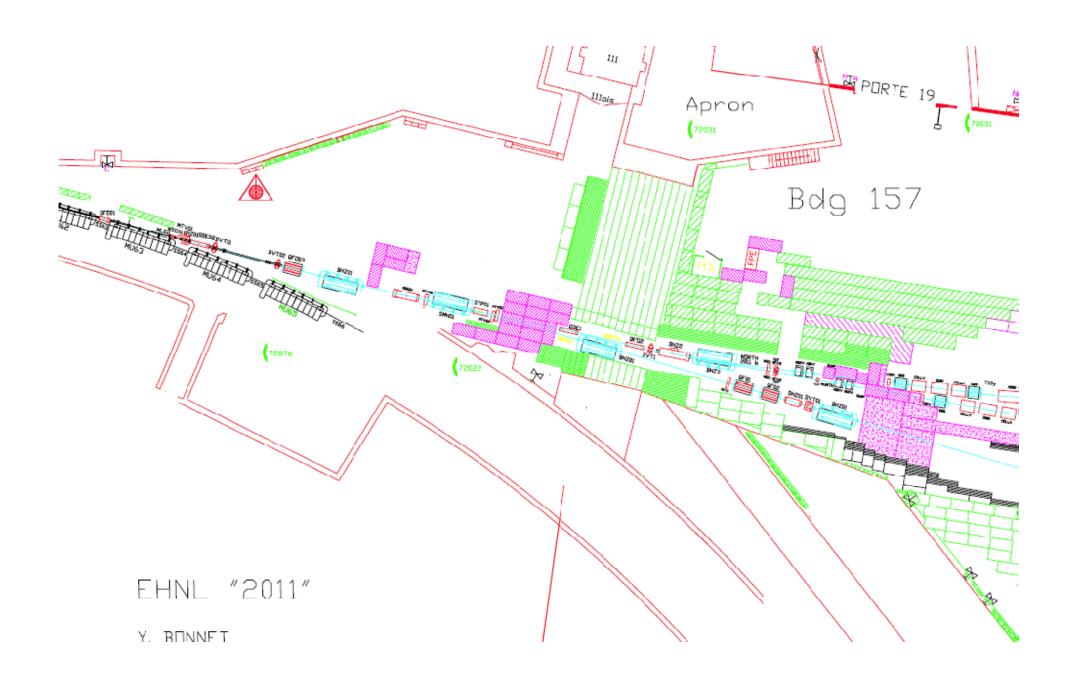
All existing in present T9, T10, T11. Spectrometers (existing!) to be added

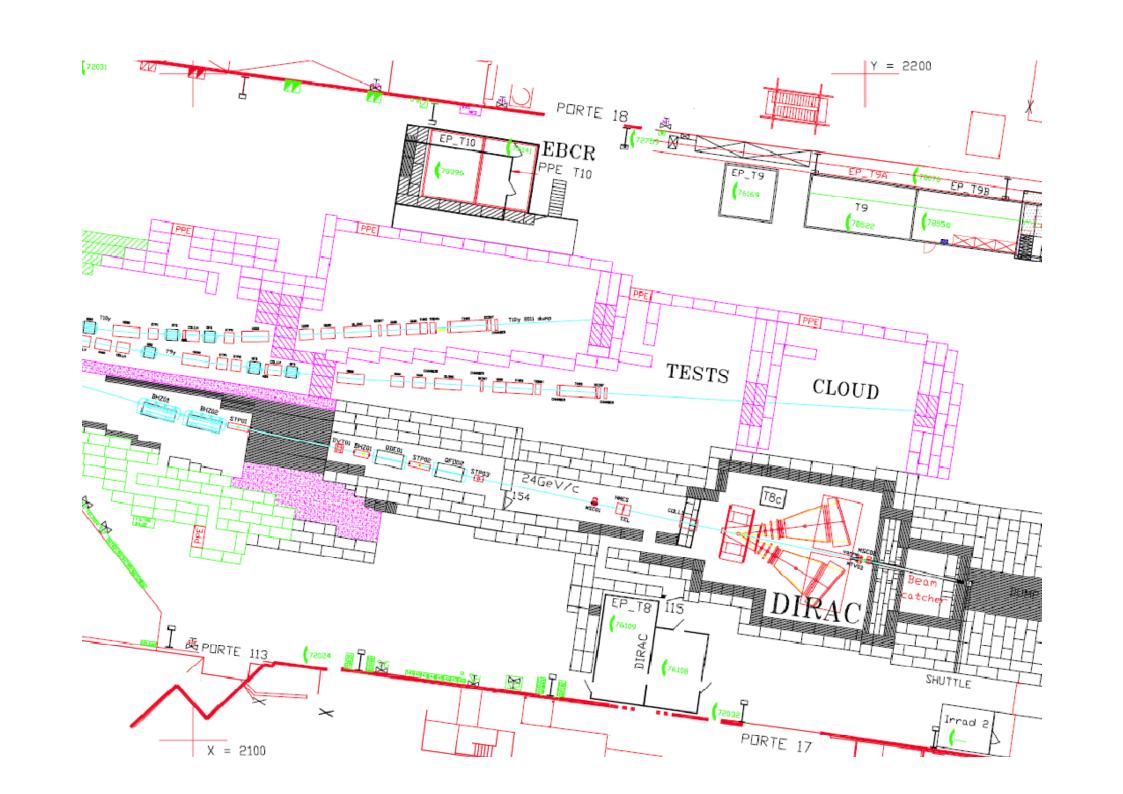

*) Could be connected in series

Detailed attribution remains to be optimised!

SPECIAL BEAM OPTICS FOR CLOUD (Beam spot ~2x2 m!!!)

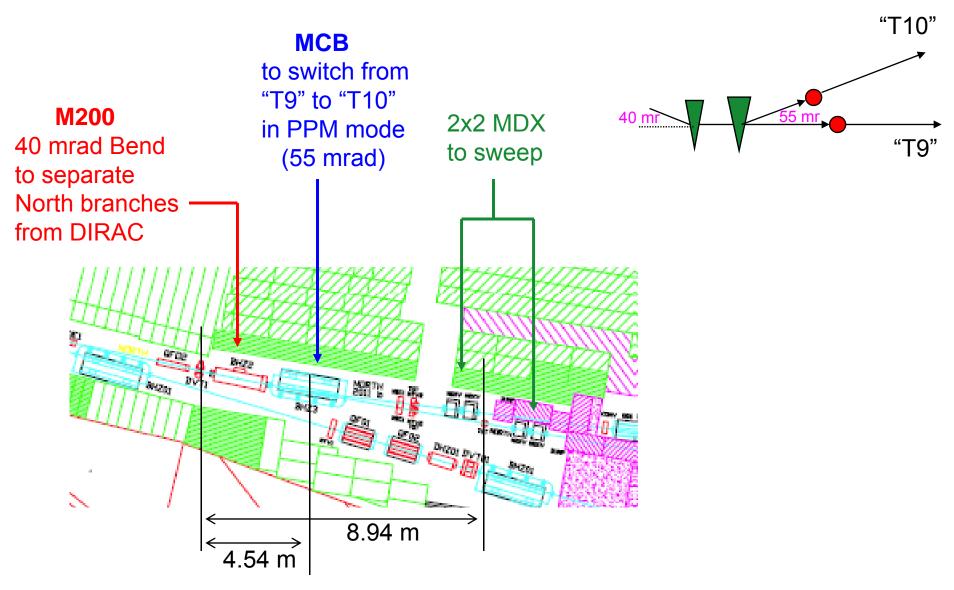
Beam Profile at CLOUD



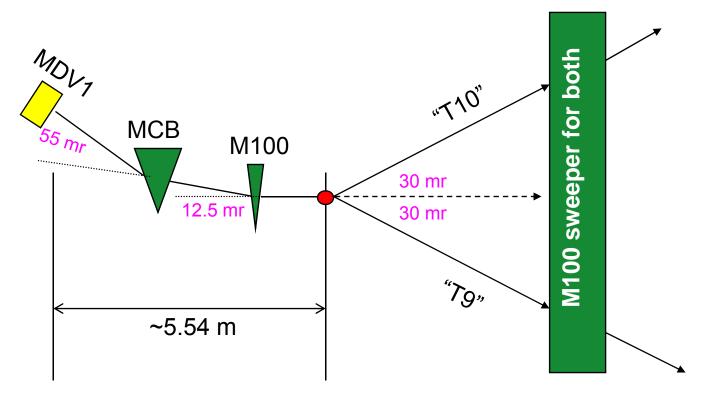

1800

55386 -0.7132 524.0

And this is how it looks 'on the floor':



The shapes are made as overlays on the old, respectively new layout drawing, on the same scales **Old layout:** PS zone **Primary zone** Open DIRAC **New layout:** PS zone Primary zone Sec. zone Open DIRAC

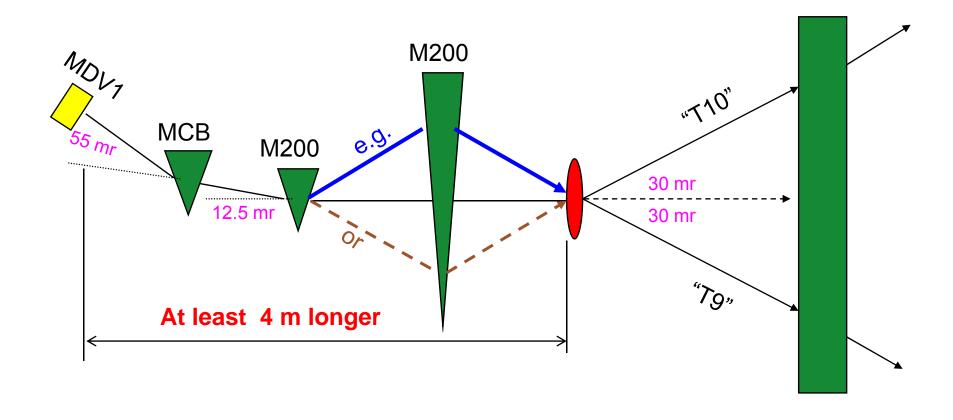

How to run two test beams simultaneously

So far: Layout for switch, i.e. run two test beams on different cycles

Alternative solution:

θ_{prod} = 30 mrad_H \oplus 35 mrad_V \approx 46 mrad

 θ_{prod} = 30 mrad_H \oplus 30 mrad_V \approx 42 mrad


Advantage: operate both beams on the same cycle

Disadvantages: Larger production angles (degrade with θ^2 !)

Electron sweeping on/off for both beams

Shorten T9,T10 front-ends by 1 m, hence 5.5 cm closer together

Or a complete "Wobbling" as in North Area

Advantage: Get simultaneous operation with larger decoupling (as in North Area T2)

But have to move T9 and T10 beams downstream by at least 4 metres, i.e. into transit areas

What does this mean?

- Compatibility with requirements from DIRAC/IRRAD and CLOUD
- More flexible and better test beams, but (effectively <) 1 less Higher top momenta, small production angles, choice of particle type
- Only use agreed 'healthy' magnets with sufficient spares

 All magnets and rectifiers exist reduced cost
- Primary beam is dumped almost immediately after target

 High (also induced) radiation levels restricted to minimal areas
- Very restricted number of magnets is under heavy roof shielding The ones in a limited zone following the primary area have only a thin roof shield. Many have no roof shielding.

RP simulations are required to see whether the latter shield can be avoided

Restricted material cost but lots of reshuffling of lines and shielding

Side remark:

In 2005 a proposal was made to upgrade the controls of the East Area. For the moment in the East Area there is:

- no remote control / readout of collimators
- control of magnet currents only by working sets and knobs
- no easy and convenient beam files
- no remote reading of access system and vacuum state
- no user applications for reading of beam instrumentation

However, one delay wire chamber + a scintillator were added per beam since then

It seems that this could be an occasion to **migrate the East Area controls to Cesar** (i.e. the recently upgraded North Area controls).

At the time the resource estimate (excluding DWC + scints) were about 80 kCHF for VME crates + Cerenkov upgrades plus a number of man months on the software side. Now part of this upgrade has been done already (timing, VME).

Proposed time line

- □ CLOUD changes from Mk2 to Mk3 module in 2011 (tbc)
 This requires a larger beam and a larger zone (T11 → T9B zone)
 It seems reasonable to synchronize the EA modifications with this change
- □ DIRAC / IRRAD future not well understood at this moment but new design is essentially decoupled from this question

Rebuild of parts inside PS and of primary zone in **shutdown 2010/11**, provided CLOUD has completed its Mk2 program

Continue construction of test beams during the 2011 run Could probably continue operation of DIRAC during 2011 with some additional local shielding at exit of the primary zone

Total duration of project: first estimates 8-12 months

SUMMARY

- A conceptual design has been presented for a new East Area
 - Compatible with approved experiments

 Better, more flexible test beams. Users would benefit!
- Uses reliable hardware with spares
- Restrict radiation hot spots to restricted regions
- Easier access to most of equipment in case of failure
- Modest material cost, but work to reshuffle lines and shielding
- □ Could start in shutdown 2010/2011 if funding available
- ☐ Engineering studies needed to finalize RP aspects and resource estimates

Thanks for your attention

Thanks also for very valuable input and help from many people. In particular I want to mention:

F.Bordry, J.Lettry, W.Kalbreier, D.Tommasini, D.Bodart, C.Rembser, E.Perez, H.Breuker, R.Steerenberg, J-L.Blanc, Th.Otto, M.Widorski, M.Lazzaroni, Y.Bonnet, ...

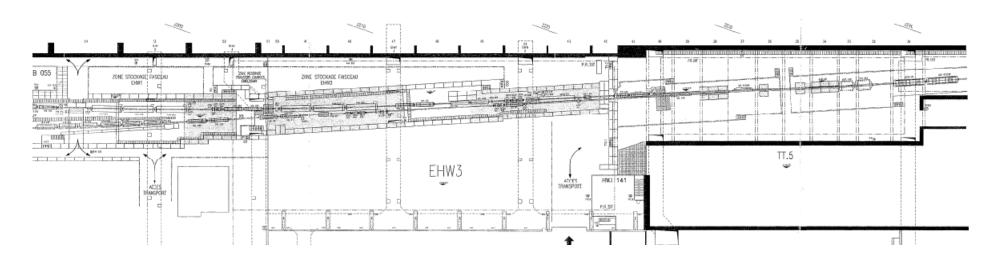
VERY PRELIMINARY ESTIMATES (tbc by engineering studies)

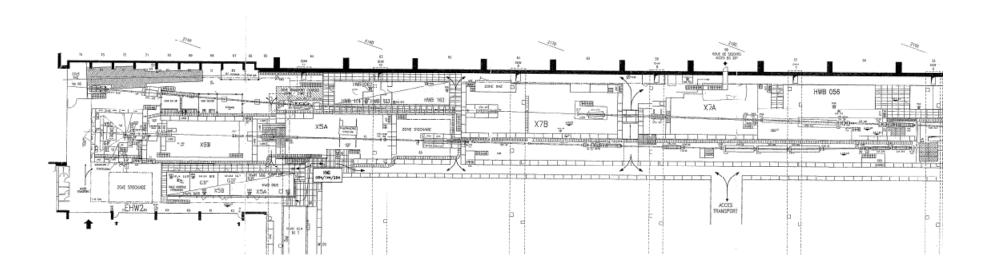
Team	Item	Weeks
Transport	Remove roof shielding	6
Transport	Remove equipment	2
Transport	Remove side shielding walls	2
Survey	Trace walls and beam lines on floor	2
Transport	Rebuild new shielding walls	4
Transport	Install concrete floors in beam areas	4
Transport	Install beam elements	4
Survey	Align beam elements	4
Transport	Rebuild roof shields	4
Magnets	Connect magnets (power, cooling, interlks)	4
Vacuum	Install and connect vacuum	4
Various	Instrumentation, RP monitors, etc	8
Various	Tests	4
		52 / 30

green: can be done mostly in the shadow of other activities

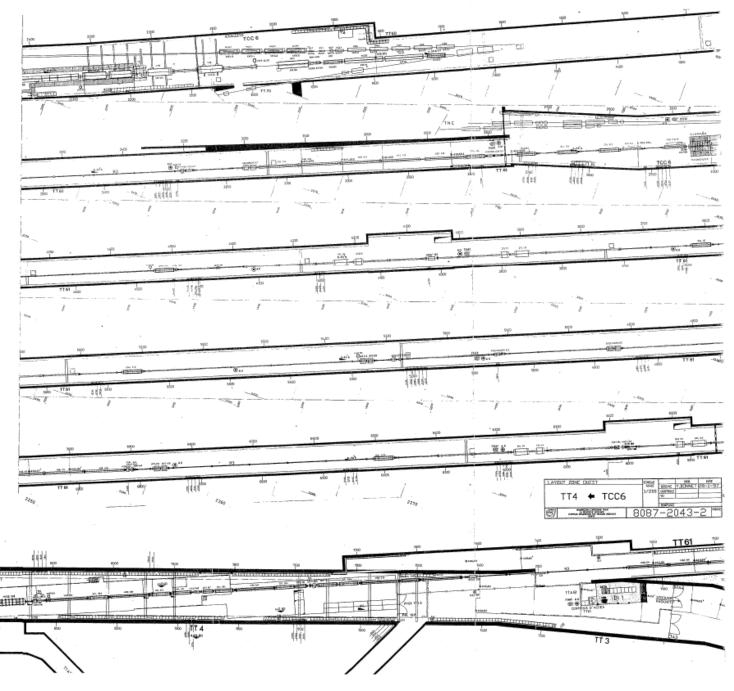
Total duration could be 7-8 months (?). Primary + PS zone work in 4 months?

Remember: West Area rebuild in late 1990's


Beam	Length (m)	Budget	Duration	Comments
X5	≈ 280	< 250kCHF	14 weeks	From H3 splitter
X7	≈ 220	< 250kCHF	14 weeks	From H3 splitter
НЗ	≈ 600	~1.1 MCHF	18 weeks	From T1 target to H3 splitter. Cost dominated by new T1 target and primary beam dump blocks


Compare to East Area

Beam	Length (m)
Primary beam+South branch	65
Dirac line (hardly touched)	75
North branch	30
T9 beam	70
T10 beam	50
Total	290 (215)


The proposed East Area reorganization seems of a similar scale as the rebuild of X5 and X7 (i.e. excluding the H3 part), which took at the time a total of ≈ 7 months and ≈ 500 kCHF

X5&X7 beams after upgrade in late 1990's:

T1+H3 modification:

Characteristics of magnets available for new East area

Type	Curve	B _{max} (T)	BLmax	I _{max} (A)	Gap(mm)	Wgap(mm)	Lyoke	Lupstr	L_{down}	Ltot	Width	Height
MCB	MCB	1.73	4.5	880	80	160	2.5	0.325	0.295	3.12	1.246	1.25
M100SP	D100B	1.88	1.88	675/800	140	520	1.0	0.358	0.312	1.67	1.74	1.16
M105	D105	0.2476	0.2598	600	100	100	1.05	0.11	0.11	1.27	0.44/.413	1.515
M200SP	D200B	1.83	3.66	830	140	520	2.0	0.358	0.312	2.67	1.74	1.16
MC200	D200C	1.74	3.48	850	140	340	2.0	0.195	0.240	2.435	1.40	1.10
MEA19	D19B1	.79, .61	.15,.117	180	130, 196	220	0.19	0.067	0.067	0.324	0.62	0.86
MNPA25	D25	0.784	0.196	600	202	260	0.25	0.147	0.147	0.544	0.79(.68)	0.685
MNPA30	D30F	0.813	0.244	600	205	400	0.30	0.1465	0.1465	0.593	0.918	0.838
MDX	MDX100	1.35	0.54	240	100 (max)	80	0.40	0.135	0.108	0.643	0.60	0.60
MEJ15	D150	2.34	3.52	880	50	100	1.5	0.18	0.07	1.75	0.78	0.75

Type	Curve	B _{tip} (T)	G(T/m)	GL max	I _{max} (A)	R _{eap} (mm)	L_{voke}	Lupstr	L_{down}	L _{tot}	Width	Height
Q100	Q100	1.17	11.7	11.7	625	100	1.0	0.23	0.23	1.46	1.13	1.13
Q120	Q120A	1.322	26.44	31.73	900	50	1.2	0.17	0.09	1.46	0.415	1.46
Q200	Q200	1.115	11.15	22.3	750	100	2.0	0.23	0.254	2.484	1.13	1.13
Q600	Q150	1.01	10.05	15.08	875	100	1.5	0.135	0.26	1.895	1.09	0.58
QFL	Q120B	0.97	19.33	23.2	500	50	1.2	0.146	0.135	1.481	0.844	0.8775
QFS	Q80	0.945	18.9	15.7	500	50	0.8	0.146	0.135	1.081	0.844	0.8775
QDS	Q82	0.871	19.2	16.3	500	45.5	0.82	0.135	0.125	1.08	0.6	0.801

Units in metres, except if indicated otherwise. Indications in blue: depends critically on overall orientation Curves in black: PS parameterization, curves in red: NA parameterization

Characteristics of magnets available for new East area (2)

Туре	Weight(t)	Flow(m3hr-1)	T rise (°)	P drop (bar)	R (mΩ)	Induct (mH)	Number	Reference	Manufact
MCB	20.5	3.6	30	15	172	639	10	PXMBHHCCWP	Alsthom
M100SP	17.7	2.7	30	3.5	195		4	PXMBHGGHWC	Oerlikon
M105	0.75	15	35	15	80	1.7	3	PXMBHBCHWP	Jungers
M200SP	35.5	4.0	30	5	208	975	10	PXMBHHEHWC	Alsthom
MC200	29.3	7.5	30	18	360		7	PXMBHHDCWC	Lintott
MEA19	0.52	0.6	30	5	250		8	PXMCXCCHWC	Elin
MNPA25	0.73	1	30	5.3	100		6	PXMCXCBWWC	Rade Koncar
MNPA30	1.04	1.1	30	5.3	100		7	PXMCXCDHWC	Rade Koncar
MDX	1.0	0.54	30	10	305	221	10		
MEJ15	8.5	4.5	30	16.7	200		3		Slikkerveer
Q100	6.85	2.7	30	5	200	80	17	PXMQNEETWC	Oerlikon
Q120	4.5	4.1	30	4	175		7	PXMQNEI8WC	Tesla
Q200	12, 17.1	3.3	30	4.5	200	115	5	PXMQNFBTWC	Rade Koncar
Q600	4.1	0.9	30	15	360		9	PXMQNEH_WC	BREDA
QFL	3.72	0.72	30	6	102	120	5	PXMQNEFTWP	BBC
QFS	2.6	0.6	30	8	64	82	10	PXMQNEGTWP	BBC
QDS	1.45	0.5	30	6	62	45	12		

Nominal Currents

BP ("F61") beam				
QFO1	642.5			
DHZ1	0 (< 600)			
QDE2	367.2			
DVT1	0 (< 250)			
DVT2	0 (< 250)			
QFO3	388.0			
BHZ1	490.7			
QDE4	329.6			

"DIRAC" beam				
BHZ1	369.9			
BHZ2	369.9			
DVT1	0 (< 200)			
DHZ1	0 (< 480)			
QDE1	426.9			
QFO2	486.7			
Spectro	< 2500			

South branch				
"SMH1"	518.1			
BHZ1	247.8			
QFO1	375.5			
QDE2	376.6			
DHZ1	0 (< 180)			
DVT1	0 (< 600)			
BHZ2	0 (< 800)			

North branch (A/B)			
QDE1	196.9 /		
	213.8		
QFO2	226.1 / 269.5		
DVT1	0 (< 400)		
BHZ2	763.8		
BHZ3	0 /		
	850.0		

"T9"	beam				
(15 GeV/c)					
DHZ1	0 (< 240)				
QFO1	301.4				
QDE2	320.4				
QFO3	301.4				
BHZ1	560.1				
QFO4	338.2				
QFO5	338.2				
BHZ2	560.1				
QDE6	630.1				
BVT1	430.7				
QFO7	505.2				
QDE8	630.1				
DHZ2	0 (< 240)				
DVT1	0 (< 240)				
Spectro	< 1000				

"T10" beam					
(12 GeV/c)					
DHZ1	0 (< 240)				
QFO1	299.1				
QDE2	330.8				
QFO3	299.1				
BHZ1	712.9				
QFO4	354.8				
QFO5	354.8				
BHZ2	712.9				
QDE6	417.5				
BVT1	386.2				
QFO7	446.9				
QDE8	277.3				
DHZ2	0 (< 240)				
DVT1	0 (< 240)				