n_TOF Phase-2 Operation in 2009

Outline

- □ n_TOF operation untill 2004
- New target construction
- Commissioning
- Facility Upgrade
- Beam Requests

ATOP Days 2009 Vasilis.Vlachoudis@cern.ch

CERN 06.03.2009

Concept of n_TOF

ADS Developments:

- Nuclear Waste Transmutation
- Medical Isotopes Production
- Cleaner Energy Production
- Boron Neutron Capture Therapy [BNCT]
- ⇒ Require the complete and precise knowledge of neutron cross sections

Idea:

- Knowledge acquired from TARC (PS-211)
- PS of CERN [26 GeV/c, 3 10¹³ pr]
- Spallation target Pb, to produce neutrons
 [1 proton 24 GeV/c ⇒ ~700 neutrons]
- Long flight path ~200 m

n_TOF Facility TT10 200 meters **ISR** $20~{\rm GeV}$ Experimental Proton beam Area TT2 <u>Targe</u>t BOOSTER PS Neutron-Beam Detector Neutron source Proton Beam 20 GeV Lead Spallation 7 x 10¹² ppp Target LINAC Neutron-Beam 10 production angle

n_TOF beam characteristics

- Wide energy range
- High instantaneous neutron flux
- High resolution
- Low ambient background
- Low repetion frequency
- Favorable duty cycle for radioactive samples.

 2^{nd} collimator ϕ =1.8 cm (capture mode)

The neutron fluence in EAR-1

Energy range	Uncollimated	Capture mode	Fission mode
	[n/pulse/cm2]	[n/pulse]	[n/pulse]
< 1 eV	2.0E+05	3.1E+05	2.0E+06
1 eV - 10 eV	2.7E+04	4.5E+04	2.9E+05
10 eV - 100 eV	2.9E+04	4.7E+04	3.1E+05
100 eV - 1000 eV	3.0E+04	5.1E+04	3.3E+05
1 eV - 1 keV	8.6E+04	1.4E+05	9.3E+05
1 keV - 10 keV	3.2E+04	5.4E+04	3.6E+05
10 keV - 100 keV	3.9E+04	7.1E+04	4.7E+05
100 keV - 1000 keV	1.1E+05	2.3E+05	1.5E+06
1 keV - 1 MeV	1.8E+05	3.5E+05	2.3E+06
1 MeV - 10 MeV	8.3E+04	2.4E+05	1.7E+06
10 MeV - 100 MeV	2.8E+04	7.2E+04	5.1E+05
> 100 MeV	4.4E+04	1.2E+05	5.6E+05
1 MeV - > 100 MeV	1.6E+05	4.4E+05	2.7E+06
Total	6.2E+05	1.2E+06	8.0E+06

Note: 1 pulse is 7E+12 protons. Collimated fluence (fission and capture modes) is integrated over the beam surface.

The real world

n_TOF commissioned in 2001-2002

Capture

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96Zr, 93Zr

¹³⁹La

186,187,188OS

233,234[]

²³⁷Np, ²⁴⁰Pu, ²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments 2002-4

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

SC/RP: Cooling circuit activation in 2004

Info: CERN-SC-2005-034-RP-TN

SC/RP: Cooling circuit activation in 2004

Isotope	Activity	Activity	Activity	Ratio
	concentration	concentration	concentration	Nov. 2004/
	11.11.2003	12.10.2004	16.11.2004	Nov. 2003
	(Bq g ⁻¹)	(Bq g ⁻¹)	(Bq g ⁻¹)	
⁷ Be	99.6	84.4	74	0.74
⁶⁵ Zn	4.49 10 ⁻²	1.63	6.6	
⁸⁸ Y	2.88 10 ⁻²	4.51	18	
¹⁷² Hf/Lu	3.6 10 ⁻²	6.44	23	
¹⁸³ Re	7.27 10 ⁻²	8.83	73	
¹⁸⁵ Os	3.46 10 ⁻²	25.9	120	
¹⁹⁵ Au	9.02 10 ⁻²	59.0	360	

Isotope	Exemption	Activity	Multiple	Total	Multiple
	Limit	concentration a	of $L_{\rm E}$	activity A	of
	$L_{\rm E}$ (Bq g ⁻¹)	16.11.2004		in 700 l	$100L_{ m E}$
	or (Bq)	(Bq g ⁻¹)			
⁷ Be	400	74	0.19	51800	1.3
⁶⁵ Zn	3	6.6	2.2	4620	
88Y	8	18	2.25	12600	
¹⁷² Hf/Lu	8	23	2.88	16100	
¹⁸³ Re	10	73	7.3	51100	
¹⁸⁵ Os	20	120	6	84000	
¹⁹⁵ Au	40	360	9	252000	

Target Interventions

- Target removal was performed at the 27.09.2007
- Target visual inspection & photography
- Pit & pool inspection (web camera)
- First dose rate measurements of the target and pit
- Measurement of hole at the beam impact location
- Samples taken from the target to be analyzed
- FLUKA simulations of the target activation, as well as detailed maps for pit and pool
- Target surface inspection using a dedicated custombuilt (and developed) laser system
- Detailed dose rate measurement of the target and pit (November 2007)
- Extensive study of the target corrosion mechanism

Target Inspection

- Pitting corrosion caused a hole at the proton impact location
- Important surface oxidation due to rupture of protection layer when the drying was performed (flush)
- Target shape didn't allow for a correct water flow at the entrance face

Modular assembly lead to a mechanical instability and deformation

Milestones towards restart of nTOF

14.07.2007	Presentation to the First External Panel Review
27.09.2007	Old Target removal
	Study of possible solutions
14.02.2008	Presentation to the Second External Panel Review
14.03.2008	Decision to build the New Target
	Target Design and Construction
	Preparation of the Safety File
12.11.2008	Short commissioning of new target
15.04.2009	Installation of the new cooling system
	Ventilation of primary area
	Air-tight technical gallery
	Alignment of FTN line and last collimator
18.05.2009	Commissioning of the new Target

New Target: Conceptual Design

Pit layout

Facility Status 17.10.2008

2008 Short Commissioning

We asked for an exceptional authorization from SC/RP to start in 2008 with a <u>reduced cooling</u> circuit and <u>no ventilation</u>.

Conditions:

- The specific activity should not exceed 1% of the exemption limit LE for the concentration (Bq/kg)
- The absolute activity released per month (Bq) should not exceed the exemption limit
- The above are calculate based on the past experience and the corrosion/erosion test performed at CERN

Start: Monday 3 Nov 2008

Stop: 13 Nov 2008

Duration: 10 days

• Total number of protons: 2×10^{17} pot (1% of a years beam)

Max. Power accepted: ~3kW

Super cycle: 40s – 48s

Problems

- pH of cooling circuit too high. Installed a big filter that slowly decreased the level
- ARCON system failure: We developed a pseudo-ARCON system that was able to fulfill the requirements of SC/RP

Proton Beam

- Most of the time was spent on tuning the beam and detectors
- We've got the authorization to run with 300 pulses of high intensity
- Triggering alarms on PAXTOF01 and PAXTOF04

Beam characteristics on 12.11.2008

Beam spot ~6x6 cm²

Neutron Fluence

Problems

- Our transformer worked for the 50 last pulses
- Part of the beam was intercepted by the quadrupole magnet
 - Generating alarms on PAXTOF1, and PAXTOF4
 - Above 2.5 μSv/h in the ISR tunnel

Proposal:

- Air Tight the auxiliary gallery
- Move the PAXTOF01 to the level of the 200 door.

Syrvicin	Designation	Dj.wine in	Designation
T	Anti-Miler	12-67	Robfort & cores Trains, New Y
ş			
Θ	Autra film	PKI	Robfest. 6 pointseu
7	Disput de sev-retour (type 1)	b=d	Poblist B mapops
\Box	Diopat de son-retour (type JC)	宁	Serra-mobar o diphrogras (pras) assa commonde monada
11111	Gen pe cochur	7	Serve-reciser Becirique seus communic monade
-Ġ-	Genynomur	Ŷ	Serre-mober non diffei eus communis manufe
	Grillpina	무	Serve—rector & plaine (hydr.)
•	Dit refe in technor	甲	Serve-reciser extensible sess servesede manufic
4	Enhangeur & planne	Tq.	Verse d'orgin
*	Equal I	₽	Vana al'exponsion
H	Filtre on Y	Ш	Venne il pullettro
-(3)-	Perspe sectifuge		Vince & membrane
a	Parjour	M	Vario poplier
Ω	Ridarilan expensións	[><]	Vario & passage direct
	RiderOsc acceptque	E ₂₅ 4	Veren 3 selse
-04-	Risioniaur de premion	₩.	Verm 4 min
-[359]-	Régulateur du alliait d ^e mas		Soupeper de alleurith
693	RIED	4//4-	Tuyou flecible
bed	ress.	0	Oligonaur
Ω	Parapa 6 vide	81	Communer de délité
2,≈0	Vorme 4m riigioga Typel		Bride .
D <u>#</u> 0	Vorme 4m riigioga Typa2	\$	Occuration

Water flow: 8 m³/h at 1.5 bars

Temperature: 18 C

Instrumentation: O₂, pH, Conductivity

Retention basin: 1000 l

Degassing Device

Ventilation

The n_TOF-Ph2 experiments

Capture measurements		
Mo, Ru, Pd stable isotopes	r-process residuals calculation isotopic patterns in SiC grains	
Fe, Ni, Zn, and Se (stable isotopes) ⁷⁹ Se	s-process nucleosynthesis in massive stars accurate nuclear data needs for structural materials	
A≈150 (isotopes varii)	s-process branching points long-lived fission products	
^{234,236} U, ^{231,233} Pa	Th/U nuclear fuel cycle	
235,238	standards, conventional U/Pu fuel cycle	
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides	

(*) approved by CERN Scientific Committee (planned for execution in 2009)

The n_TOF-Ph2 experiments

Fission measurements		
MA	ADS, high-burnup, GEN-IV reactors	
²³⁵ U(n,f) with p(n,p')	new ²³⁵ U(n,f) cross section standard	
²³⁴ U(n,f)	study of vibrational resonances at the fission barrier	
Other measurements		
147 Sm(n, α), 67 Zn(n, α), 99 Ru(n, α) 58 Ni(n,p), other (n,lcp)	p-process studies gas production in structural materials	
Al, V, Cr, Zr, Th, ²³⁸ U(n,lcp)	structural and fuel material for ADS and other advanced nuclear reactors	
He, Ne, Ar, Xe	low-energy nuclear recoils (development of gas detectors)	
n+D ₂	neutron-neutron scattering length	

Accepted Proposals

CERN-INTC-2006-012:

The role of Fe and Ni for s-process nucleosynthesis in the early Universe and for innovative nuclear technologies Number of protons approved: 1.8×10¹⁹

CERN-INTC-2006-006:

Proposed study of the neutron-neutron interaction at the CERN n_TOF facility.

Number of protons accepted: 0.2×10^{19}

CERN-INTC-2006-016:

Angular distributions in the neutron-induced fission of actinides. Number of protons approved: 0.15×10¹⁹

CERN-INTC-2008-035:

n_TOF: New target commissioning and beam characterization. Number of protons accepted: 2.45×10¹⁸

Conclusions

- Experience gained from the previous target help on the construction of the new target
- Short commissioning in Nov'08, Showed values consistent with simulations
- Work on progress:
 - Cooling system
 - Ventilation of primary area
 - Air tight the technical gallery and relocate PAXTOF01
 - Alignment of FTN line and neutron line
- Measurements:
 - 4 Accepted proposals, 2 of them will be performed in 2009
 Beam Request: ~2.5×10¹⁹ p
 - Expected constant use of 2.0×10¹⁹ p/year
- Future:
 - Heavy water
 - Disposal of old target