
BigPanDA monitor
Sergey Padolski

BNL

Status

• Recently: More data, more plots, more pages, more
fixes

• Feedback: monitor is great, but performance is a
problem. + More links to offline analytics is needed.

• Near future: performance reworking, numbers
revision.

Status

New feature from Kurchatov Institute

Task List

https://docs.google.com/spreadsheets/d/1cSz2j4iI-zlapLc8Ap9uOd4riODo0hVTHCJ9DYhWsXM/edit#gid=0

https://docs.google.com/spreadsheets/d/1cSz2j4iI-zlapLc8Ap9uOd4riODo0hVTHCJ9DYhWsXM/edit#gid=0

User Behavior Analysis

New analytic views were recently developed
(SESSIONANALYSIS1, SESSIONANALYSIS2)

User Behavior Analysis

User Behavior Analysis
Session is user actions sequence with timeout less than
30 minutes

User Behavior Analysis

Access impact (%), only non cached pages

task 17.97

jobs 17.32

main 11.46

dash 11.1

tasks 11

user 8.17

errors 5.3

sites 3.76

users 3.26

site 2.07

User Behavior Analysis

User Behavior Analysis

7 hours

User Behavior Analysis

User Behavior Analysis

User Behavior Analysis

User Behavior Analysis

System performance

Bottleneck analysis
Jobs page

1. Retrieve jobs (4 active + possible archived)

2. If (dynamic conditions) retrieve JediJobRetryHistory, reconstruct chain

3. if user request conditions, go to JediDatasetContents

4. if (dynamic conditions) go to JediDatasets

5. go to Filestable4

6. if (dynamic conditions) go to FilestableArch

7. if (dynamic conditions) go to Filestable4

8. if (dynamic conditions) go to FilestableArch

9. if (dynamic conditions) go to JEDI_EVENTS

~13 individual DB queries, ~30 MB retrieved from DB,

DB data transfer ~ 1M/sec, 98% of time posix.waitpid

~ 7 different paths of DB access
branched logic

Requirements for the next
iteration

Significantly reduce frequency of data access
operations and amount of transferred bytes

Most of processing logic should be
implemented nearby the data

Tools we (can) try

• Google BigQuery

• Indexed data storage on top of Apache Lucene
(Elastic Search, Solr)

• Spark

Google BigQuery
• Pros:

• Developed by Google (expecting reliability, high performance)

• Highly scalable

• Cons:

• UDF is a fresh technology (less than year - small knowledge base)

• Critical part of monitoring is going to proprietary technology, outsourcing to external company, on
shared resource.

• Every user query costs money (rough estimation: few cents for each processing a large table).
The more complex algorithm of the data processing - more it costs. New metric - cost of request.
New error - billingTierLimitExceeded.

• Network connectivity between CERN and BigQuery warehouse become critical part of the ability
of monitoring to deliver fresh data to the end user.

• Deploying monitor to another experiments involves accepting proprietary technologies,
payments to google for processing, storage, import, etc, additional technology to support

Apache Lucene solutions
(ES, Solr)

A new prototype was developed in 2015:

• Cheap and quick approached - architecture has
been kept

• A class to translate Django Query to Solr
language developed

• Performance didn’t increase significantly and
R&D stopped

 Apache
• Pros:

• Highly scalable (Tencent example with 8000 nodes and 150PB +1 PB a
day)

• Easily deploying on virtual or physical clusters

• Advanced underlying technologies (full Java support)

• Native integration with R (one of the most popular analytic and machine
learning tool)

• Open Source

• Cons:

• Have to maintain cluster or buy service

Spark prototype
Goal: Check is technology stack applicable to monitoring, assess
speed

Scope:

• Program skeleton to run embedded Spark server and «user
queries»

• Establish mutual data stream

• Perform preprocessing

• Perform fast selection

• Perform complex data aggregation

Spark prototype
• Stand alone Java application

• Few simultaneous version of data

• As new version of data is imported, it become actual
and programs address queries to this dataset

• Only skimmed data is transferring (thanks to
ORA_ROWSCN)

• Preprocessing is applied

• Speed of data aggregation is 1000 rows / core / sec

Possible scenarios
• Big query:

• Initial technology assessments, debugging, data streaming, delivery to web server (1-3
weeks)

• Implementing monitor real case (2-4 weeks)
• Assessment speed, cost, reliability, working on development plan (1 week)

• Spark
• Setup the development spark cluster (~1w).
• Setup the uninterrupted data stream (Oracle-Spark) (~1-2 w).
• Implementing backend for Errors Page (~1-1.5 months).
• Implementing backend for DashBoards (~2-2.5 months).
• Implementing backend for Jobs (~3 months).
• Implementing backend for Tasks page(~3.5 months).
• Other pages which cooked with huge delays (~4.5 months).

The best-case estimate: 3 months, the most likely estimate: 4.5 months, the worst-case estimate:
6 months, weighted average (E = (best + 4mostlikely + worst) / 6) = 4.5

• Elastic search
Development schema transformation, preprocessing, start importing data, working case
prototype (1-2 months)

Backup

User Behavior Analysis

User Behavior Analysis

BigQuery cost estimation

Lets say we update a biqquery warehouse once a 10 minutes. That correspond to 220M of data
transfer only for the jobs table. $0.01 (per 200M) x 6 (times per hour) x 24 (hours per day) x 365 =
525.6$. Just for refreshing jobs table

In the most simple case when we retrive jobs from jobsarchine table processing only
MODIFICATIONTIME field:
10GB*0.001*5 = 5 cents per one query to jobsarchive.

