

VFE asic considerations

Saclay's Upgrade Workshop

Marc Dejardin CEA-Saclay Irfu/SPP

Reminder

- For HL-LHC upgrades
 - Keep energy measurement as good as possible
 - Improve spike tagging
 - Mitigate APD leakage current increase
 - Mitigate OOT pileup
 - Mitigate IT pileup
- Guidelines
 - Get shaping time as short as possible
 - ► OOT pileup, leakage current induced noise
 - Get amplification chain BW as high as possible
 - Increase signal information
 - Spike tagging, timing information

Integration in existing system

- Mother board kaptons (d = 130 mm)
 - $R_{\rm MB} = 53 \text{ m}\Omega/\text{cm}$
 - L_{MB} = 4.5 nH/cm
 - $C_{\rm MB} = 2.4 \, \rm pF/cm$
- APD capsule kaptons (d from 70 to 165 mm)
 - $\mathbf{R}_{APD} = 35 \text{ m}\Omega/\text{cm}$
 - $L_{APD} = 2.4 \text{ nH/cm}$
 - $C_{APD} = 1.7 \text{ pF/cm}$
- LC resonator with APD capacitance (160 pF)
 - **Resonance frequency ~40 MHz**
 - Electronic Bandwidth upper limit
- Ultimate performances limited by the system

The discriminating information is there

- APD: reverse biased diode
 - Current source
 - Signal: photon induced variation of reverse current
 - Noise: random variation of reverse current = f(I_{leak})
 - ► $\tilde{\mathbf{i}}_{APD} = 5.4 \sqrt{\mathbf{I}}_{leak} [pA/\sqrt{Hz}]$ (\mathbf{I}_{leak} in uA, M=50, F=2)
 - **Equivalent of noise generated by** $R_{eq} = 525/I_{leak} \Omega$
 - Bandwidth: unknown but large
 - Well above connection cutoff frequency
 - Capacitance: ~160 pF
 - Connection line (kapton):

Leakage current

- HL_LHC start (300 fb-1):
 - 10-20 uA (18°C) 5-10 uA (8°C)
- HL_LHC end (3000 fb-1):
 - 100-200 uA (18°C) 50-110 uA (8°C)
- VFE should be efficient for all scenarios
 - First year of HL-LHC perhaps not at full lumi...

ohoto electrons (a.u.)

• Spike: Dirac energy deposition in APD core

- ~ isolated crystal
- In time and out-of-time wrt LHC collisions
- Scintillation: Follows photon arrival on APD
 - 4.5 p.e/MeV w.o. loss
 - 3.5 p.e./MeV @ 300 fb⁻¹
 - 2.8 p.e./MeV @ 3000 fb⁻¹
 - +30 % @ 8°C !

- On analog signal
- On sampled signal

- Dynamics:
 - From APD induced noise (100 MeV ?)
 - Up to 2 TeV
 - ► 14.3 bits
- Number of gains
 - Depends on ADC choice
 - 2 gains (x10, x1) seems enough (with 12 bits ADC)
- Linearity
 - No real constraint but present MGPA is quite good
 - ► Could be taken as reference: +- 0.1 %
- Shape stability (with time, with amplitude)
 - Should be good enough for
 - Multifit performances and timing measurements
 - ► To be quantified

Shaping time

Shorter

- Less OOT contamination
- Less integration of leakage current fluctuations
 - ► Less noise

- But less integration of signal charge
 - ► Less mV/fC
 - Not relevant for TIA

VFE options

- MGPA++ : MGPA evolution
 - New technology
 - Reduce shaping time
 - Extra features (spike tagging)
- TIA
 - Image of APD current, BW limited (~35 MHz)
 - TSMC 130nm technology
 - Extra features done in OD (spike tagging, TDC, filtering)
- **QIE++** : **QIE** evolution
 - Gated charge integrator, gate width to be defined
 - Bi-cmos technology
 - Enhanced ADC wrt QIE13
 - Extra features (tdc)

ADC options

- With shorter shaping
 - **Oversampling mandatory**
 - ► For OOT pileup mitigation (multifit over-constraining)
 - For shape analysis (spike tagging)
 - For IT pileup mitigation (timing)
 - 80, 160 MHz?
 - Drawback : More data to transmit
- Digitization noise should be negligible wrt other contributions
- Should include extra feature for versatility
 - **Output look-up table for compression**
 - Gain switching behavior
 - Sampling phase tuning
- Architecture à-la ADC41240 has proven its robustness
 - Could be taken as baseline design

10²

10³

E [GeV]

10

Resolution

10

10

10 10⁻²

10⁻¹

1

VFE options comparison

- Define case studies for comparison
 - @ 300 fb⁻¹, 1000 fb⁻¹, 3000 fb⁻¹ and 5000 fb⁻¹
 - With 0, 100, 200 PU
- Electronics performances
 - Noise
 - Spike tagging efficiency
 - Timing resolution
 - Data volume
 - Development risk
- Options
 - Sampling rate
- Inputs and tools
 - Shapes and PU from toyMC (tuned with TB results)
 - APD noise model from measurements
 - Electronic noise from simulation

- Physics performances ?
 - Hgg with PU
 - gg vertexing
 - X(750)gg

- Still lot of questions and options
- Let's hear more details on various options

