VFE interface to FE

A.Dolgopolov, <u>A.Singovski</u>

CMS ECAL VFE phase II upgrade workshop, May 2016

Basics: we stay with the Trigger Tower concept

Legacy EB FE card:

Transmit data from VFE at 2x0.8Gbs

- Max. transmission capacity: two GOH, max 1.6Gbs each = 3.2Gbs
- Contain buffers and logics to accept Level 1 trigger
- Contain CCU connected to
 Token Ring to deliver clock
 and control information to
 VFE

Phase II EB FE card:

- Need >16Gbs
- New clock and control system

A.Singovski, CMS ECAL VFE phase II upgrade workshop

History: data links for LHC experiments

- Three common R&D projects:
 - FERMI
 - Token Ring for Clock & Control
 - GOL
- Key issues high reliability in radiation hard conditions
 - Choice of technology
 - Rad. Hard design

Current situation after ~10% of the design fluencies:

- > Observe radiation-induced dark current, thresholds, etc. effects according to the expectation
 - > 250nm technology was a good choice
- Observe events which can be interpreted as a SEU, recoverable, rate fit to the expectation
 - Rad. hard design works
- No massive problems with the data corruption
 - 8/10 bit & Glink protocols work well
- No dead channels clearly attributed to the radiation damage (CMS ECAL)

1. We do observe the radiation induced effects.

2. Rad. Damage mitigation is justified and give the expected results.

Can we use the off-shelf optical links components?

- 20Gbs per trigger tower is an easy task for the modern data communication industry
 - Off shelf devices, transmit/receive per link
 - IO Gbs almost obsolete
 - > 25 Gbs widely produced
 - > 40 Gbs state-of-art, available from many producers
 - Radiation hard technology: I 30nm and 65nm
 - Multiple effects, sometimes hard to interpret, different for different processes / producers
 - No definitely rad. hard technology so far

The most reasonable choice for the moment – CERN custom rad. hard design: GBT & IpGBT ,VL & VL+

Data Link for the upgrade FE

- Reasonable strategy
 - Consider IpGBT @VL+ as a baseline
 - High data transmission rate, allow 80MHz and more sampling
 - Development on-going, failure can not 100% excluded
 - ▶ Safe backup solution currently available GBT + VL
 - Industrial production
 - Marginally sufficient data transmission rate

GBT based FE. Bit/chip count

	5xGBTx 8/10bit, 4.48GBs	3xlpGBT Fec5 9.13Gbs	4xlpGBT Fec5 9.13Gbs	5xlpGBT Fec5 9.13Gbs	6xlpGBT Fec5 9.13Gbs
Total data transmission rate (per FE)	22.4 Gbs	27.39 Gbs	36.52 Gbs	45.65 Gbs	55.8 Gbs
Bits per crystal @40MHz	22	27	36	45	55
Bits per crystal @80MHz	П	13	18	22	27
Bits per crystal @160MHz	5	6	9	П	13

VFE design with the current amount of data (12 + 2 bits per crystal) can run

- @ 40MHz with 5 x GBTx
- @ 80MHz with 4 x lpGBT
- @ 160MHz with 6 x lpGBT

A.Singovski, CMS ECAL VFE phase II upgrade workshop

5xGBTx option

- We can place on the FE card
 - ► 5 x GBTx
 - I x GBT-SCA
 - ▶ 3 x VL modules: 5 x T & I x R

CERN EDA-02xxx-V1		TOP SILKSCREEN														
NY	DESS	A.DOLGOPOLOV	TOP SIDE													
CMS/ECAL	DATE	10/06/2014		1												

A.Singovski, ECAL Upgrade meeting. CMS Week.

13/05/16

lpGBT options

- **GBT**x is 20 x 20 BGA, 17mm x17mm
- ▶ IpGBT I7 x I7 BGA, 9mm x 9mm
- No GBT-SCA needed
- VL+ is much more compact than VL
- → we can place more than 10 lpGBT and > 10+1 VL+ transmitters on the FE card

- The Versatile Link PLUS project (VL⁺) targets the phase II upgrades of the ATLAS and CMS experiments
- VL⁺ was officially announced at ACES 2014 and started on 1 Apr 2014. It is subdivided in three phases of 18 months each:
 - Phase 1: proof of concept (Apr 2014 Oct 2015)
 - Phase 2: feasibility demonstration (Oct 2015 Apr 2017)
 - Phase 3: pre-production readiness (Apr 2017 Oct 2018)
- Collaboration between CERN, FNAL, Oxford, and SMU

	Versatile Link	Versatile Link PLUS					
Optical mode	Single- and multi-mode	Multi-mode					
Flavours	1Tx+1Rx, 2Tx	Configurable at build time up to nTx(+1Rx)					
Radiation level	Calorimeter grade	Tracker grade					
Form factor	SFP+	Custom miniature					
Data rate	Tx/Rx: 5 Gb/s	Tx: 5/10 Gb/s, Rx: 2.5 Gb/s					

Table : Key differences between VL and VL*

8 March 2016

csaba.soos@cern.ch

A.Singovski, ECAL Upgrade meeting. CMS Week.

VL+ Possible opto-hybrid layout

A.Singovski, ECAL Upgrade meeting. CMS Week.

13/05/16

VFE – FE interface

Direct connection, no interface in case of appropriate ADC output configuration.

- GBTx option
 - ADC \rightarrow GBTx: 8/10 bit eLinks
 - Bandwidth 80 / 160 / 320 Mb/s
 - Max #eLinks 56 / 28 / 14
 - Clock & control: GBT-SCA chip, sufficient capacity for 5xVFE
- IpGBT option
 - ADC \rightarrow IpGBT: FEC5 eLinks
 - Bandwidth 320 / 640 / 1280 Mb/s
 - Max #eLinks 28 / 14 / 7
 - Clock & control function taken by IpGBT (to be clarified)

Test in 2016: FE deminstrator

D

FE demonstrator: tests foreseen

- VFE-FE eLink interface (via Adapter board)
 - Speed
 - Protocols
- Clock distribution
- VFE slow control
- Data transmission
 - Old VFE
 - VFE simulator (Adapter) @ 40MHz, 80MHz, …
 - New VFE
- Beam test with the real TT

EE demonstrator

13/05/16