Implications of fast timing to VFE board design

Francesco Micheli

Outline

- Why timing?
 - Timing of what + quantitative statements
- Present and future ECAL timing performance
- Fast timing detectors and implications

HL-LHC environment

- HL-LHC harsh environment:
 - 140 (\rightarrow 200) collisions for bunch crossing
- "Interesting" interactions are < 1% of produced vertices
- Individual vertices not resolved \rightarrow 10% of vertex merging rate

Physics performance @ HL-LHC

- Many **low-level effects** on object reconstruction:
 - Extra energy in jets / isolation cones from particle overlap
 - Merge of vertices and fake high p_T jets
 - Degraded Jet/MET performances
 - Degraded efficiency in associate photons with vertices
- Precise time information of different particles can mitigate these effects:
 - Timing of tracks and low pT photons:
 - Vertex reconstruction using timing info

HGCAL and/or additional detectors (last slides)

Calo-timing: ECAL

could have a key

role

- Pile up mitigation: removal of extra energies in jets/ isolation cones, improved MET performance
- Timing of high pT electromagnetic showers:
 - Vertex location for diphoton system
 - Compensate efficiency loss in association of $H \rightarrow \gamma \gamma$ photons to vertex

Calo-timing: $H \rightarrow \gamma \gamma$ as case study

Diphoton vertexing efficiency ($|z_{vtx}-z_{true}| < 1 \text{ cm}$) in $H \rightarrow \gamma \gamma$:

- Phase I LHC: ~75-80%, it goes to 30% for HL-LHC
- With 30 ps resolution for photons:
 - For $|\Delta \eta_{\gamma\gamma}| > 0.8$: 68% for vertex location with photon timing alone (50% of total events)
 - For $|\Delta \eta_{\gamma\gamma}|$ <0.8: Poor performance on vertex location with photon timing alone

Calo-timing: $H \rightarrow \gamma \gamma$ as case study

Diphoton vertexing efficiency ($|z_{vtx}-z_{true}| < 1$ cm) in $H \rightarrow \gamma \gamma$:

- Phase I LHC: ~75-80%, it goes to 30% for HL-LHC
- With 30 ps resolution for photons:
 - For $|\Delta \eta_{\gamma\gamma}|$ > 0.8: 68% for vertex location with photon timing alone (50% of total events)
 - For $|\Delta \eta_{\gamma\gamma}|$ <0.8: Poor performance on vertex location with photon timing alone

MIP and low energy photons timing

- With O(25) ps resolution on both neutrals and tracks 50 PU performance recovered
- Vertex merging reduced by ~1 order of magnitude
- With hermetic timing system pileup mitigation recover performance loss of PF reconstruction

"The greatest performance benefits are observed when timing information from neutrals is matched with time-zero information from the vertices, extracted from charged tracks."

More details with case studies on both calo and tracking timing here: <u>Fast Timing Working</u> <u>Group Report</u>

More thoughts on implications slides 13-16

Current timing performance

- ECAL performance @ LHC collisions at 8 TeV:
 - Ecal Timing paper of 2009 shows constant term 40ps on neighbouring xtals
 - ~150-250 ps for electron from Z \rightarrow ee events
- To achieve detector-wide good resolution clock stability is needed
- Clock distribution monitored with laser system:
 - Timing resolution of \sim 40 ps measured for crystals illuminated at the same time
 - Instabilities measured over time due to power cycle for channels in same token ring

Precision timing test beam

- Fall 2015:
 - Test beam in H4 with electrons up to 200 GeV
 - 2x3 barrel xtal matrix, different photodetectors configuration:
 - APD (back), MCP (front) (→ to give reference time), SiPM-MCP (front)
- Previous TB: timing studies looking at xtals in same shower
- This TB: We measure time wrt time of entrance of electron on the xtal

Timing TB setup

• **2x3 barrel** PWO crystals:

View from the front

- VFE board interfaced with fast digitizer
- one row with standard MGPA electronics, one row with MGPA shaping time reduced by a factor 2 (dV/dt x 2 at the same shower energy).
- Using MGPA GAIN 6 (to fit within digitiser dynamic range for all energies)
- 3 crystals with photodetectors from the front: 2 crystals with HPK SiPMs, 1 crystal with HPK MCP
- 2 MCP in front of the crystal matrix used as reference timing for the electron
- Time resolution of MCP reference time ~25ps (subtracted in quadrature for coming resolution plots)

APD: Test beam results

- Waveforms sampled at 5Gs/s
- Two shaping time configuration tested: 43 ns (standard) and 21.5 ns

 APD signal time obtained from a template fit to the digitised pulse shape (160 samples used in the fit)

APD: Resolution vs amplitude

Noise dominated by test beam electronics:

Noise of the differential to single ended buffer used to send the signal to the digitiser (same noise level for APD1 & APD2, but APD2 has ~ x2 dV/dt). Resolution as a function of A/ σ follows a common curve for APD1&2.

In CMS for 50 GeV shower A/ σ ~ 800

Constant term below 30ps indicates that intrinsic PbWO₄+APD jitter is below this value.

SiPM: Front face light collection

- Two SiPM attached to the crystal front face. Time extracted with a NINO board.
- Coincidence between the two SiPM proves that SiPM + NINO has resolution ~25 ps
- Comparison with reference MCP time yields to a timing resolution limited to 70-80 ps.

- Largest time resolution component in reading from the front could come from shower fluctuations
- Dimensions of the SiPM also matter
- Necessary to iterate with two SiPM on the bottom and different SiPM

ECAL Timing resolution

ECAL Timing resolution:

- Time intrinsic resolution better then 30ps is possible for PWO+APD (for shower >30 GeV)
- In the TB, main time resolution contribution dominated by **external noise** (not coming from the MGPA). Resolution scales with dV/dt as expected.
- Bandwidth limit of the APD+kapton (35 MHz) limits fast rise time. Could be another important limiting factor. (see Marc slides)
- Jitter depends on many factors: which parts of the pulse is used, radiation damage, shaping or not pulses (see Sasha's slides). To be studied further on both simulations and data.
- Front face readout promising, needs more understanding of limitations
- **Promising,** to be demonstrated:
 - Clock stability needed to achieve detector wide timing resolution of ~ 40 ps can be maintained with laser monitoring system

Future plans

- Final assessment of **intrinsic timing performance** for EB Phase II electronics will require further studies both on simulation and test beam:
- Slightly different waveforms at different energies:
 - Probably electronics but could be related to time of arrival of photons
- Important to assess linearity of electronics:
 - Linearity study of TB electronics in lab with LED/LASER on APD envisaged
 - This study can be done also on new electronics
 - Final goal of this test beam season:
 - Intrinsic timing of shower on APD and non-linearities to correct (shower development & fluctuactions)
 - Test beam with new electronics: Matrix 30 xtals, with APD (also irradiated and blackened) in Summer

Fast timing layer

- An integration/alternative is a fast timing layer before ECAL: (see slides 2-4)
- Two possible configurations:
- Thin layer :
 - Timing for MIPs
 - Can be inside tracker
 - Constraints from tracker upgrade → probably outside
- "Thick" preshower-style layer :
 - Timing for MIPs and photons
 - Strictly outside tracker
- Layout
 - Granularity of order 1cm
 - Rate capability up to 10⁶-10⁷ Hz

Possible technologies

- Silicon timing detectors: <u>S.White, at Frontier Detectors etc., Elba, (Italy) 2015</u>
 - Fast silicon sensors with internal gain
 - Use gain to extract clean MIP signature and sharpen rise time for precise timing measurement
- Thin crystals with fast photosensors (SiPM):

<u>A.Benaglia, P. Lecoq, et al.,</u> <u>Pub. in Preparation</u>

- Different scintillating crystals (LSO, LYSO, LuAG)
- Small crystals reduce time dispersions
- Micro-channel plate devices (MCPs):
 - Direct ionization and Cherenkov radiatior configuration tested

A.Ronzhin et al, Nucl. Instrum. Meth. A795 (2015) 52–57; L.Brianza et al. Nucl. Instrum. Meth. A797 (2015) 216–221; A.Bornheim, Frontier Detectors, Elba 2015; Dustin Anderson et al., Precision timing calorimeter for high energy physics

Possible technologies - II

- Big test beam program ongoing:
 - Last test beam campaign finished two \boldsymbol{v}

Devices tested with muons, pions and e

 Technologies are different but in general similar performance in terms of timing resolution:

Resolution ~ 20-30 ps achievable

A tentative scenario

- Preshower style xtals + fast photodectors in equipped layer in front of ecal
- Has to be t CMS cum grano salis" but not so unrealistic
- Dimensions could be of the order of ~1 cm on 3 dimensions:

Implications on ECAL upgrade

- Fast timing layer in **preshower configuration**:
 - Timing of both high and low energy electromagnetic shower (not possible for ECAL)
 - Timing in ECAL still useful (hits cleaning, spike rejections, association, pulse shape studies...)
 - Impact on energy resolution should be marginal
- Preshower for mips and low-energy photons + ECAL would allow to fully exploit timing potentiality associating ECAL info to vertex time.
- Fast timing schedule is **tight**:
 - First report establishing **proof of principle and case studies** already out:
 - Physics case showing that **50PU performance are recovered**
 - Studies ongoing on:
 - Reconstruction and physics performance, devices and detector design and cost
- First report at ECFA 2016 in Autumn, final report ~March 2017

Conclusions

- ECAL with **stand-alone timing** is promising:
 - PWO intrinsic timing resolution of PbWO4 + APD system better then 30 ps
 - Main time resolution contribution in this TB is dominated by external noise
 - Some non-linearities to be understood with lab tests and simulations
 - If **clock stability** achieved detector wide:
 - Promising monitoring with laser system
 - Fast timing layer could be an interesting upgrade option:
 - Unlikely to get better then 30ps for E<30 GeV with ECAL, low energy photons important for PU cleaning of Jets/MET (Assessment of JET cleaning and MET performance w or w/o low pT photons in ECAL interesting future study)
 - Best performance when we combine ECAL time info together with vertex time
 - Technology and final physics performance studies ongoing

HL-LHC environment

4-Dimensional vertex reconstruction Slide from L. Gray

4-Dimensional Vertex Reconstruction 1

The space-time structure of simulated and reconstructed vertices assuming a mock-up of a fully covering fast-timing layer in 50 (slide 13) and in 200 (slide 14) pileup events shown, the hard scatter event is $H\gamma\gamma$. The assumed timing resolution per track is 20 ps. The input simulated vertices are shown for reference.

The 4D vertices are reconstructed using a simulated annealing algorithm that is a higher dimensional extension of the vertexing algorithm [1] used presently in CMS. 4D Tracks are constructed by determining the time-stamp at the distance of closest approach using smeared simulation information. A p_T cut of I GeV is required for tracks to enter the vertex fit.

Instances of vertex merging for the 3D algorithm can be seen in 50PU at -7.3 cm and 3 cm, and throughout the 200PU plot.

[1] <u>https://cds.cern.ch/record/865587</u>

Above is a space-time diagram displaying ability to correlate calorimetric timing with track timing, using a $H \rightarrow \gamma \gamma$ decay as illustration. The reconstructed time for the photons from the hard scatter, in green, can be cross referenced with the time information of the 4D vertices. A triple coincidence, seen at (2.4 cm, -0.05 ns), of the two photons and a track vertex in space-time indicates uniquely the signal vertex. The event is generated from a pileup distribution with mean 20 to improve clarity.

PWO pulse shape from simulation

Contribution from Cherenkov radiation is estimated to be about 11% by simulating photons in EM showers within full range of detectable $\lambda = 300 - 1000$ nm

Relative light output of Cherenkov and scintillation photons in PbWO₄ was determined by simulating experimental results for 150 GeV muons reported in N. Akchurin et al., *"Contributions of Cherenkov light to the signals from lead tungstate crystals"*, NIM A582 (2007) 474-483

Due to *instantaneous* emission of Cherenkov photons, most of them arrive earlier than scintillation photons

