ADC for ECAL Upgrade

J. Varela, LIP Lisbon

ECAL VFE Upgrade meeting, CEA Saclay, 12 May 2016

Physics Motivations

- Opportunity opened by ECAL frontend upgrade
- Higher luminosity and radiation levels
 - SEU immunity
- Technology upgrade to CMOS 130 or 65 nm
 - integration of ADC with digital data processing (multi-gain)
- Possibility of precise time measurement
 - using high sampling frequency
- Improved spike and pileup rejection
 - using detailed pulse shape analysis

ADC: tentative specifications

- Resolution 12 bit
- Speed >120 MSPS
- Current < 50 mA
- Supply (V) ≈ 1V
- Architecture: SAR or Pipeline
- Technology TSMC CMOS 130 or 65 nm
- Area < 0.4 mm²
- Radiation resistance (tbc):
 - gamma dose (TID) ~ 1Mrad
 - neutron flux ~ 2.4×10^{14} n/cm²
 - integrated dose and neutron flux in ECAL for the HL-LHC integrated luminosity

Institutional Motivations

- LIP contribution to CMS Upgrade should have a significant fraction in-kind provided by Portuguese industry
- The present ECAL ADC (12 bit, 40 MHz) was developed by Chipidea in Lisbon.
- Two poles of high-level expertise in ADC IP in Lisbon with close links to LIP
 - Synopsys (previously Chipidea) Joao Vital, Manuel Mota
 - S3 (previously Acacia Semiconductor S.A.) Joao Goes
- Other options

Synopsys option

• ADC IP for TSMC 65 nm and 28 nm:

Process node	TSMC65LP	TSMC28HPC
Architecture	Pipeline	SAR
Resolution (bit)	12	12
Speed (MSPS)	250	160
Drawn Area (mm2)	0.34	0.08
Current @ 160MSPS (mA)	36	6.5
Supply (V)	1.2	0.9

- It turned out that the implementation of SEU immunity doesn't fit in Synopsys business model
- Synopsys declined the invitation

S3 option

- S3 has ADC IPs with the required specifications
 (e.g S3AD250M12BIT65LPX, S3ADS320M12BSM40LL)
- S3 has experience in 'radiation-hardened ADCs'
 - 13-bit 80 MS/s 'self-calibrated Pipeline' ADC in TSMC 90nm for ESA, including IC and radiation tests
 - Expert: Joao Goes
- S3 can adapt these IPs or others to include TMR and possibly other techniques:
 - 12b 160MS/s SAR-based ADC
 - GDS2 and Timing/VERILOG views
 - Radiation resistance customization
 - Development time scale ~ 6-12 months

Radiation resistance customization

ц	Specification	Effect in the circuit®	Hardening by Design Techniques Employed
TID¤	1000krad∙Max.¤	V⊤change¤	 Effect diminished has process geometries are reduced. Should not be very critical in beyond 130nm technology (e.g. 65nm or 90nm standard CMOS). ¶ Use high-<u>Vt</u> NMOS and standard-<u>Vt</u> PMOS devices. ¶ Design transistors with a lower <u>VDsat</u> voltage to improve robustness to <u>Vt</u> variations. ¶ Calibrate the ADC offset. ¤
TID¤	1000krad Max.¤	Parasitic leakage current [□]	 • Use · P+ · guard · rings · to · separate · different · circuit · in · the layout. ¶ • Use · enclosed · layout · transistors.[□]
SELĦ	70MeV.mg-¹.cm²¤	Circuit latch-up ^{II}	 Use large P+ guard rings to separate NMOS and PMOS transistors. ¶ Use large N+ guard rings inside NWELLS. ¶ Use TMR (triple module redundancy) to deal with SEU.⁴

Universidade Nova option

- Direct collaboration of LIP with Joao Goes, Universidade Nova
 - Joao Goes is professor at Univ Nova (microelectronics) and is S3 Advisor
- Possible collaboration with INFN/Torino in chip integration
- Manpower:
 - Univ Nova: team of 4 engineers, licenses Cadence/Calibre, fabrication in TSMC 65 nm
 - LIP: team of 2 engineers in digital design
- Deliverable: ECAL digital chip with ADCs integrated
 - multi-gain selection, data compression
- Development time ~ 18 months, including MPW
- More flexible option towards final chip validated under radiation

TOFPET ASIC

SiPM readout from analog frontend to digital system interface

- 2 x 64 channels in 7 x 7 mm²
 - CMOS 130nm
- SNR (Qin = 200 fC, C_{in}=350pF): 25 dB
- TDC time binning 50 ps (option 25 ps)
- Optimized for low power
 - 10 mW per channel
- Digital I/O LVDS
- New version TOFPET2
- ADC measurement in the range 100fC-1500 pC
- Event rate up to 600 kHz per channel
- Silicon produced. Testing on-going

Developed in collaboration LIP, PETsys, INFN/Torino

Two 64-channel chips

CMOS 110 nm Die size 5x5 mm²

Simulation studies

- New Posdoc to participate at 50% in simulation work
- Establish collaboration with the ECAL groups involved
- Study data compression algorithms vs sampling rate
- Example in next slide
- Validate architecture and finalize ADC specifications

Data compression

- 80 MSPS \rightarrow 3 (4) x 10 Gb/s links per tower (25 crystals)
- Zero suppression algorithm with constant latency:
 - transmit samples at 40 MHz in the baseline
 - transmit samples at 160 MHz in the pulse region
 - one bit identifier per sample
- Assuming pulse contained in 3 BCs, probability of sample above noise is ~ 30% (for 200 pile-up events)
- Equivalent bandwidth required is 76 MSPS

Very tentative ECAL ADC chip

- 1 to 25 channels per chip (tbd)
- Three ADC blocks per channel (multi gain)
- 25 * 3 analog signals = 75 ADCs
 - total silicon area 30 mm²
 - power 3.5 W
- Digital processing
 - Selection of highest non-saturated sample
 - Data compression
- GBT interfaces
 - eLinks

Tentative schedule

- Simulations and final specs Dec 2016
- ADC design for radiation & digital design Sep 2017
- 1st MPW (partial chip) submission Dec 2017
- 1st MPW tested Sep 2018
- 2nd MPW (full chip) submission Dec 2018
- 2nd MPW tested Sep 2019
- Engineering run submission Dec 2019
- Wafers available Jul 2020
- Chips available for VFE production Dec 2020

BACKUP