

Off detector electronics considerations

Bob Hirosky VFE Workshop, May 13, 2016

Overview of ECAL Barrel readout

Off-detector electronics

TCC Upgrade

Trigger Concentrator Card (TCC)

- Receive event data from FE
- Alignment, pulse reconstruction
- Calculation of trigger primitives
- Implement offline spike suppression algorithm before L1 (maintain acceptable trigger rates)
- Transmit data to L1 trigger, DCC

Located off detector, no requirements for radiation tolerance

- Implement using commercial FPGA
- Maximize overlap with other technological choices at CMS, with ECAL customization (eg see CTP7)

Spike rejection

Present online rejection algorithm relies on coarse summation of crystals in 1x5 strips with energy deposits above a fixed threshold

Existing energy L1 algorithm breaks at trigger HL-LHC luminosities:

- Affected by APD noise increase
- Not robust at high pileup levels
- Rate depends on beam intensity
 - E_{τ} > 20 GeV: ~1 spike/6k events at 7 TeV

Spike rejection

Offline rejection of spikes rejection algorithm using topological characteristics for L1 trigger

Additionally timing/shape distributions can identify pulses inconsistent with scintillation light.

Combining these two methods, topological and timing cuts, a spike rejection factor >>100x can be obtained.

DCC Upgrade

Data Concentrator Card (DCC)

- Receive event data from FE, TCC
- Integrity checks, alignment
- L1 trigger latency buffer, feedback to trigger (throttle)
- Zero suppression, possible SRP functions
- Transmit data to DAQ

In new readout structure a single data stream from the detector feeds trigger and data paths.

=> it's possible to think of these either as functional logic blocks on the same HW or tightly coupled, similar cards Preferable design may consist of a single DCC/TCC per ½ supermodule

- 72 cards to handle 68 readout units per SM
- Modern FPGAs already close to providing full I/O capability in a single device

CCS Upgrade

Clock and Control System (CCS)

- slow controls of the front-end electronics: electronics configuration and status report
- distribution of fast timing signals: e.g. clock, trigger.
- routing of the trigger throttle signals

Precision timing capabilities achievable, due to intrinsic performance of ECAL. Improves association of neutral energy deposits with vertex => p_{τ} resolution

ГСC

SRP

DCC

VFE

FE

Photon vertex resolution contributes significantly to Higgs mass resolution

Timing data (Fall 2015) testbeam

- Observe ~30ps constant term (ct <1cm)
- Achieved timing performance insitu ~ 150ps: timing drifts on front end

Include high precision clock distribution CCS/FE upgrade

Trigger

CCS

Laser

Monotoring

Local DAQ

Global DAQ

Link and bit counts from Magnus's talk

Counting links

"Baseline – Three up"

- Three 10 Gbit up-links would allow 24 (26) bits per channel
 - Three 320 Mbit Elinks
 - ▲ 11 (12) bits ADC plus gain flag @ 80MHz. Enough?
 - Requires e.g. one 3+1 versatile link+ module per FE (foreseen)

"Four up"

- Four 10 Gbit up-links would allow 32 (34) bits per channel
 - Four 320 Mbit or two 640 Mbit or one 1280 Mbit Elinks
 - ▲ 15 (16) bits ADC plus gain flag @ 80MHz. Better?
 - Requires e.g. one 4+1 versatile link+ module per FE (foreseen)

"Six up"

- Six 10 Gbit up-links would allow 48 (52) bits per channel
 - Six 320 Mbit or three 640 Mbit Elinks
 - ▲ 11 (12) bits ADC plus gain flag @ 160MHz.
 - 15 (16) bits ADC plus gain flag @ 120MHz.
 - Requires e.g. two 3+1 versatile link+ module per FE
 - Only one FE control link would be used; the other receiver used for precision sampling clock?

Counting links

68-readout units/SM Baseline planning for off detector electronics: 2 xCC cards/SM

10Gb Links/xCC		almost
3-up	102	Modern FPGAs ^have enough links (~70)
4-up	136	less than 2x what's available today
6-up	204	almost 3x largest today's link counts
•		

Assuming something like 16-fiber matrix connectors: (eg Molex zCD, almost available)

			With down links	
#conn	ectors	Min	#	space
		linear space		
3-up	7	~12cm	9	~15cm
4-up	9	~15cm	11	~19cm
6-up	13	~22cm	17	~30cm

UTCA / ATCA height ~15cm (double wide), ~32 cm

~17mm =>

inte

Summary

- 3-up/4-up scenarios likely compatible w/ 2 off detector boards/SM, each with single large FPGA
- 6-up scenario pushing/(breaking?) limits of front panel real estate, significant increases in FPGA high speed links needed
 - Probably requires going from two to 3–4 boards/SM
- Tradeoffs/Optimizations
 - Online vs offline complexity / flexibility / cost
 - Efficient rejection of spurious signals
 - Precision timing and controls distribution