Supporting MGPA++ Design

David Cussans, Sema Zahid, Helen Heath 13/May/2016

Aims

- Support MGPA++ work at RAL
- Simulation
 - Digitize output of Stephen Thomas' pulses
 - With appropriate time distribution for scintillation and spike signals
 - 80 MSample/s assumed (should work with 40 MSample/s)
 - Make ROC (purity / efficiency) curves for MGPA++ (extend David Petyt's work)
- Model using discrete components
 - Test in lab with APD & flex-circuit cable (Kapton)
 - Produce system ready for beam-test

Current Proposal

- Update existing MGPA design
 - Stephen Thomas @ RAL
 - See his talks at EB Upgrade meetings and this w/shop
- Have charge-sensitive pre-amp + Shaper output (peak height proportional to charge), like MGPA
- In addition have output proportional to peakheight of input pulse
- Ratio is proportional to pulse width
- Use pulse-height/pulse-area ratio, together with pulse-area to reject spikes.

Block diagram

Block diagram – with spike bit

Simulated Pulses (no digitization)

- See Stephen's talk
- Change w.r.t. previous talk Starting to add more detail to peak-hold circuit
- So far, see separation of scintillation signals and spikes.
 - More realistic simulations will almost certainly degrade separation.

Spikes/Scintillation Separation at 5GeV

Plots of differentiator output and charge output

Note the amplitude difference between the scintillation and spike signals

Simulation with Pile-Up

 Starting to run Sasha L's simulation - Sasha has modified to output photocurrent (unfiltered)

Brunel

ondor

W University of

9

Assumptions

- Have assumed 80 MSample/s
 - Reduced shaping time to re-optimize noise with increased leakage current, so increase sample rate
 - However, spike-finding scheme would still work with 40 MSample/s sampling.
 - No point using this approach for 160MSample/s just use direct sampling.
- Have assumed digitization of peak-height (as well as peak-area) signals.
 - With care taken over pulse shape and delay could use analogue ratio and comparator
 - 1-bit "spike" output

Model with Discrete Component

- Aim for circuit that matches predicted MGPA++ performance
- Test performance of spike-finding
- Test performance with new(faster) shaping time

Discrete component pre-amplifier Use for EE beam-tests

Brunel

University of

Current Activities & Plans

- Finding suitable gain for peak-height output
- Putting analogue simulations through simulated ADC
 - Check spike finding still works with digitized signals (in approach with ADC on peak-height as well as peak-area output)
- Then, spike-finding purity and efficiency with digitized signals.

People

- Sema Zahid (Brunel) analogue simulation
- Helen Heath (Bristol) physics simulation
- David Cussans (Bristol) physical "mock up" using discrete components

