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Preamble: the sleepy July 14 spectator

• Fell asleep on his terrace waiting for the fireworks
• Suddenly awaken by the first shot
• Q: Can he make up for his absence during the explosion?
• A: Thanks to 

• mechanical laws 
• observations 

• He can:
• reconstruct the fragments’ trajectories 
• notice that the fastest are the furthest away 
• establish that they seem to come from one point 
• evaluate the moment of the explosion

Transposed to the Universe, this is cosmology’s program
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Cosmological Hypotheses
Cosmology = madly ambitious endeavor (Einstein):
Huge universe, not fully accessible
⇒ starting hypotheses necessary;  
check for coherence afterwards     
The Universe  is :
• simpler than its parts (earth, sun,... = details)
• governed everywhere by same physical laws 

fixed by measurements on earth  
(not directly observable)

• isotropic ⇔ no privileged direction (observable)

• homogeneous ⇔ no privileged places = anti-geocentrism 
(not directly observable: further = earlier)

⇒ very constrained system, predictive and testable



If you suppose the earth surface to be :
• isotropic around a town  
⇔ exactly concentric mountains

• homogeneous ⇔ same landscape around every town

• both ⇒ surface with curvature k=1/R = cte= single parameter

Example of such hypotheses: 
Is the Earth a sphere?

sphere
(>180°, k>0)

plane
(=180°, k=0)

saddle
(<180°, k<0)
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Earth: validity of the hypotheses
• single local measurement of R(earth): validates nothing 

Eratosthenes deduction from Alexandria & Asswan’s wells 
• many local measurements: better (if they agree!!!) 
⇒  importance of widening the horizon:

Ideal: global measurement (shadow of Earth on Moon (Aristotle), plane, 
satellite…), but requires a zoom-out impossible in cosmology 
Remark: forget foregrounds (= “annoying details”!!!)
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Homogeneity of the Universe
Not globally testable: you can only assume homogeneity and later test the 
coherence of its implications: 
• Isotropy+homogeneity at given time ⇒ matter distribution (stars, 

galaxies...) is constant (ρ=ct), and infinite (no boundaries) 
• The only compatible movements preserve ratios of distances,  the 

“comovements”: 

Hubble law:  speed increases linear with distance

Expansion de l’Univers: Modèle Newtonien c.f. e.g. Peacock,

“Physical Cosmology”

⋆ Hypothèse cosmo ≡ distrib. de masse ρ:
• isotrope sym. sphér. autour x0 = 0 expérim.
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Défs: H0 = h[100km/s/Mpc] = h[1010ans]−1; h = 0.7 ± 0.1

→ ρc
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) ẋ(t) = ȧ(t)x0 =
ȧ(t)

a(t)
x(t)

, ẋ(t) = H(t)x(t)

) x(t) = a(t)x0
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Newtonian Dynamics (0): 
2 properties of gravitation 

For any force ~ 1 / r2  like gravity (or electricity), the attraction of a 
spherical shell of mass M and radius R is: (Newton) 
• vanishing on a mass m located  

inside the sphere ( R > r ) 
• identical to a point mass M  

located at the center of the sphere,  
for any mass m outside the sphere ( R < r ) 

Thus, for a spherical mass distribution, only the  
blue shells attract the mass m, with a total force 

mr

R

Fm(r) = GNmM(r)
1

r2
= mGN

4⇡⇢r3

3

1

r2
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Newtonian Dynamics (1)
• Let’s choose a point (the earth) as a 

center 
• Consider a star m at distance x(t) of 

the earth: 
• it is only attracted by the constant 

mass                              inside a 
sphere of radius x(t), that attracts it 
towards the earth and slows its 
escape (energy conservation)  

• a(t) obeys the equation of motion 
of a 1-d point particle in the 
potential Veff (a) 

• Sign of k decides whether 
expansion stops or goes forever 
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2 ẋ2 − mG

M(x)

x

= m
2 x2

0ȧ
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M(x) = 4⇡/3 x

3
0⇢0

E0,�k > 0

E0,�k < 0

a

Veff (a) = �H2a2 � k ⇠ �1/a

8

1st Friedman-Lemaître eqn



Newtonian Dynamics (2)

• Today: Hubble constant 
H0=70 km/s/Mpc 

•      =1/(15 Gyears) 
⇔ in a year, the distance 
between 2 galaxies increases by 
1/15 billionth 

• Critical density: 

• Matter density, w.r.t. critical 
density:
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Effets relativistes (⇐ rel. générale Einstein)

⋆ Courbure spatiale = k
a2 : k > 0: univ. fermé (sphère)

k < 0: univ. ouvert (selle)

> 180◦

< 180◦

⋆ Décalage vers le rouge
(→ futur)

:
⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

λ(t) = λ0a(t)

ν(t) = ν0/a(t)
.
= ν0(1 + z(t)) (> ν0)

→ ρR(t) = ρR
0 /a4(t) (densité radiation ∼ T 4 → a(t)T (t) = cte)

p = ρR/3 → dQ = d(ρRa3) − pd(a3) = 0 (système isolé)

⇒ H2 =

(
ȧ

a

)2

= H2
0

(

ΩR

a4
+

ΩM

a3
+

1 −
∑

i=R,M,Λ Ωi

a2
+ ΩΛ

)

ΩΛ ≈ 0.7 cte cosmologique; domination pour a ∼> 1 a(t) ∼ exp(
√

ΩΛH0t)

ΩM .
= ρM

0 /ρc
0 ≈ 0.3 ” matière: a < ΩM/ΩΛ a(t) ∼ t2/3

ΩR .
= ρR

0 /ρc
0 ≈ 4.2 × 10−5h−2 ” radiation: a < ΩR/ΩM a(t) ∼ 10−10

(
t

1s

)1/2

=
1MeV

T (t)

H(t) = 1.6 g1/2
∗

T 2(t)

mPl
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E0,�k > 0

E0,�k < 0
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Veff (a) = �H2a2 � k ⇠ �1/a

1st Friedman-Lemaître eqn



Is this construction really homogeneous???
Some 
people 
think 

"here"  
is just 
here.

But in fact, 
you can 
find

“here”s  
   every- 
     where !

I know it 
because I 
was just 
there, 
… 

and they  
asked me:  
 “What  
 brings you  
        here?”

Discussion

10

FC|A =Force on object C computed from spheres around A ?=?FC|B? 
Is FC mathematically well-defined ??? 

FC-B|A=(FC|A-FB|A)?=? FC-B|B 
Are differences of forces well-defined? (hint: absolute convergence) 

Are relative accelerations well-defined? 
FA|A=FB|B=0; can both A and B be at rest in an inertial frame?  

Which one is « right »??? 
Need more general frames… ⇒ General relativity!!!



General Relativity (in 1 slide…)
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Gravitational waves
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Harmonic coordinates
Under a coordinate transformation, the metric transforms as a (0,2)-
tensor:

or for 

Harmonic coordinates are defined to satisfy the 4 equations:

→ for scalars, covariant == ordinary D’Alembertian:

Each coordinate satisfies the harmonic equation                ,  
and is defined up to a harmonic function:

13

g

0
µ⌫ =

@x

↵

@x

0µ
@x

�

@x

0⌫ g↵�

x

0µ = x

µ + ✏⇠

µ(x)
g0µ⌫ = gµ⌫ � ✏(@µ⇠⌫ + @⌫⇠µ) +O(✏2)

g

µ⌫(x)��
µ⌫(x) = 0

x

µ , x

0µ = x

µ + �

µ

⇤�
.
= gµ⌫DµD⌫� = gµ⌫(@µ@⌫�� ��

µ⌫@��) = gµ⌫@µ@⌫�

⇤� = 0



Weak field wave solutions

In harmonic coordinates,                                           leaving 10 - 4 = 6 
components, obeying in the vacuum:

Exercise: for                                     use the harmonic condition  
                                           to express         in terms of spatial 
components, and make them vanish using the harmonic transformations

Show that the remaining independent components are

which come back to after a180° rotation around z-axis (spin 2).
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GWs in a nutshell

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 2

Emitted from accelerating mass distributions (quadrupole mass moment – no dipole 
radiation)

GWs carry direct information about the relativistic motion of bulk matter

Gravitational waves are dynamic fluctuations in the 
fabric of space-time, propagating at the speed of 
light

Predicted by Einstein 100 years ago; first 
indirect confirmation by Hulse & Taylor (Nobel 
Prize in 1993)
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Detector’s working principle

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 5

DL ~ h L Æ if L ~ km Æ DL ~ 10-18 m

Typically h ~ 10-21

Technical issues - alignment, electronics, 
acoustics, etc - may limit us before we reach 
these fundamental noise sources

17



18

O1 aLIGO science run

Hanford and Livingstone running 
with similar sensitivities:
◦ 10-23/�Hz @ 100 Hz
◦ Improvement by 3-4 times wrt

LIGO between 100-300 Hz

O1: from Sept 2015 to Jan 2016
◦ ER8 before the science run, 

interferometer configuration frozen 
since Sept 12th

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 7

Analyzed data period from Sept 
12th to Oct 20th 
◦ Coincidence duty cycle ~ 48%
◦ 16 days of coincidence time
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GW150914: the signal

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 9

• Top row left – Hanford    
• Top row right – Livingston  
• Time difference ~ 6.9 ms

with Livingston first

• Second row – calculated 
GW strain using 
Numerical Relativity** 
(EOBNR and IMRPhenom) 
and reconstructed 
waveforms (shaded)

• Third Row – residuals

** Talk by A. Nagar, right after this



Estimated source parameters

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 11

Median values with 90% credible intervals, including 
statistical errors from averaging the results of different 
waveform models. Masses are given in the source frame: to 
convert in the detector frame multiply by (1+z). The source 
redshift assumes standard cosmology:  DLÎ z  assuming 
LCDM with H0 = 67.9 km s-1 Mpc-1 and Wm = 0.306 

Total energy radiated in gravitational waves is 3.0 ± 0.5 M☉ c2.  
The system reached a peak luminosity ~3.6 x 1056 erg, and the 
spin of the final black hole < 0.7

20
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GW150914: the source analysis

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 10

NS-NS binary excluded

Binary system BH-NS?

If so, MBH very large (~3000 M☉) ⇒
Coalescence happens at lower frequencies

NS-BH binary excluded

Hz 7522/2Hz 150 maxmax � � � SSZ ff Kepl

Binary system BH-BH, similar masses;

km 350
3
1

2 |
»
»
¼

º

«
«
¬

ª
 

Kepl

GMR
Z

km 2102
2 | 
c
GMRSchwarz

2 BHs (~ 30 M☉ each) colliding at c/2



Assessing the statistical significance

18/03/2016 51ST RENCONTRES DE MORIOND - A. ROCCHI 13

� False alarm rate < 1 per 203.000 years, 
� Poissonian false alarm probability < 2 x 10-7

� Significance > 5.1 s

• number of candidate 
events (orange markers)

• number of background 
events (black and purple 
lines)

• significance of an event 
in Gaussian standard 
deviations based on the 
corresponding noise 
background

22
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GR Cosmology: FRW metric
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Maximally symmetric geometry in comoving coordinates (r,θ,φ):

⇒

Conformal time:
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Conformal distance:
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⇒

⇒

Chapter 2.

INFLATION

Why is the universe homogeneous and isotropic?
Why is the CMB so uniform?

2.1. THE HORIZON PROBLEM

Consider the propagation of light in the FRW spacetime

ds2 = a2(⌧)
h

d⌧ 2 � d�2 � S2
k(�)d⌦

2
i

.

Because of isotropy, we can focus on purely radial geodesics (d✓ = d� = 0):

ds2 = a2(⌧)
h

d⌧ 2 � d�2
i

.

Photons travel on null geodesics,

ds2 = 0 ) �� = ±�⌧

(straight lines)

Consider the FRW universe in these coordinates:

particle horizon at p

p

event horizon at p

comoving particle outside 
the particle horizon at p

13

⌘ S2
k(�)

see Baumann's lectures

http://www.damtp.cam.ac.uk/user/db275/Inflation/Lectures.pdf
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1.2.2 Redshift

Everything we know about the universe is inferred from the light we receive from distant ob-

jects. The light emitted by a distant galaxy can be viewed either quantum mechanically as

freely-propagating photons, or classically as propagating electromagnetic waves. To interpret

the observations correctly, we need to take into account that the wavelength of the light gets

stretched (or, equivalently, the photons lose energy) by the expansion of the universe. We now

quantify this e↵ect.

Redshifting of photons.—In the quantum mechanical description, the wavelength of light is in-

versely proportional to the photon momentum, � = h/p. Since according to (1.2.51) the mo-

mentum of a photon evolves as a(t)�1, the wavelength scales as a(t). Light emitted at time t1
with wavelength �1 will be observed at t0 with wavelength

�0 =
a(t0)

a(t1)
�1 . (1.2.54)

Since a(t0) > a(t1), the wavelength of the light increases, �0 > �1.

Redshifting of classical waves.—We can derive the same result by treating light as classical

electromagnetic waves. Consider a galaxy at a fixed comoving distance d. At a time ⌧1, the

galaxy emits a signal of short conformal duration �⌧ (see fig. 1.5). According to (1.1.24), the

light arrives at our telescopes at time ⌧0 = ⌧1+d. The conformal duration of the signal measured

by the detector is the same as at the source, but the physical time intervals are di↵erent at the

points of emission and detection,

�t1 = a(⌧1)�⌧ and �t0 = a(⌧0)�⌧ . (1.2.55)

If �t is the period of the light wave, the light is emitted with wavelength �1 = �t1 (in units

where c = 1), but is observed with wavelength �0 = �t0, so that

�0

�1
=

a(⌧0)

a(⌧1)
. (1.2.56)

Figure 1.5: In conformal time, the period of a light wave (�⌧) is equal at emission (⌧1) and at observation (⌧0).
However, measured in physical time (�t = a(⌧)�⌧) the period is longer when it reaches us, �t0 > �t1. We
say that the light has redshifted since its wavelength is now longer, �0 > �1.

It is conventional to define the redshift parameter as the fractional shift in wavelength of a

photon emitted by a distant galaxy at time t1 and observed on Earth today,

z ⌘ �0 � �1

�1
. (1.2.57)

Redshift z : 1 + z ⌘ �0

�1
=

a(t0)�⌧

a(t1)�⌧

a(t1) = a(t0)[1 + (t1 � t0)H0 + · · · ] ) z ⇡ H0d

Redshift measures (small) distances: 

Which distance?17 1. Geometry and Dynamics

with

without

di
st
an
ce

redshift
Figure 1.8: Distance measures in a flat universe, with matter only (dotted lines) and with 70% dark energy
(solid lines). In a dark energy dominated universe, distances out to a fixed redshift are larger than in a
matter-dominated universe.

will first discuss possible forms of cosmological stress-energy tensors Tµ⌫ (§1.3.1), then compute

the Einstein tensor Gµ⌫ for the FRW background (§1.3.2), and finally put them together to solve

for the evolution of the scale factor a(t) as a function of the matter content (§1.3.3).

1.3.1 Matter Sources

We first show that the requirements of isotropy and homogeneity force the coarse-grained stress-

energy tensor to be that of a perfect fluid,

Tµ⌫ = (⇢+ P )UµU⌫ � P gµ⌫ , (1.3.77)

where ⇢ and P are the energy density and the pressure of the fluid and Uµ is its four-velocity

(relative to the observer).

Number Density

In fact, before we get to the stress-energy tensor, we study a simpler object: the number current

four-vector Nµ. The µ = 0 component, N0, measures the number density of particles, where for

us a “particle” may be an entire galaxy. The µ = i component, N i, is the flux of the particles in

the direction xi. Isotropy requires that the mean value of any 3-vector, such as N i, must vanish,

and homogeneity requires that the mean value of any 3-scalar15, such as N0, is a function only

of time. Hence, the current of galaxies, as measured by a comoving observer, has the following

components

N0 = n(t) , N i = 0 , (1.3.78)

where n(t) is the number of galaxies per proper volume as measured by a comoving observer.

A general observer (i.e. an observer in motion relative to the mean rest frame of the particles),

would measure the following number current four-vector

Nµ = nUµ , (1.3.79)

where Uµ ⌘ dXµ/ds is the relative four-velocity between the particles and the observer. Of

course, we recover the previous result (1.3.78) for a comoving observer, Uµ = (1, 0, 0, 0). For

15A 3-scalar is a quantity that is invariant under purely spatial coordinate transformations.

• metric distance: (sphere area)  

• apparent Luminosity: 
 

• Angular diameter:  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We then find

1 + z =
a(t0)

a(t1)
. (1.2.58)

It is also common to define a(t0) ⌘ 1, so that

1 + z =
1

a(t1)
. (1.2.59)

Hubble’s law.—For nearby sources, we may expand a(t1) in a power series,

a(t1) = a(t0)
⇥
1 + (t1 � t0)H0 + · · ·

⇤
, (1.2.60)

where H0 is the Hubble constant

H0 ⌘
ȧ(t0)

a(t0)
. (1.2.61)

Eq. (1.2.58) then gives z = H0(t0 � t1) + · · · . For close objects, t0 � t1 is simply the physical

distance d (in units with c = 1). We therefore find that the redshift increases linearly with

distance

z ' H0d . (1.2.62)

The slope in a redshift-distance diagram (cf. fig. 1.8) therefore measures the current expansion

rate of the universe, H0. These measurements used to come with very large uncertainties. Since

H0 normalizes everything else (see below), it became conventional to define11

H0 ⌘ 100h kms�1Mpc�1 , (1.2.63)

where the parameter h is used to keep track of how uncertainties in H0 propagate into other

cosmological parameters. Today, measurements of H0 have become much more precise,12

h ⇡ 0.67± 0.01 . (1.2.64)

1.2.3 Distances⇤

For distant objects, we have to be more careful about what we mean by “distance”:

• Metric distance.—We first define a distance that isn’t really observable, but that will be

useful in defining observable distances. Consider the FRW metric in the form (1.1.21),

ds2 = dt2 � a2(t)
h
d�2 + S2

k(�)d⌦
2
i
, (1.2.65)

where13

Sk(�) ⌘

8
><

>:

R0 sinh(�/R0) k = �1

� k = 0

R0 sin(�/R0) k = +1

. (1.2.66)

The distance multiplying the solid angle element d⌦2 is the metric distance,

dm = Sk(�) . (1.2.67)

11A parsec (pc) is 3.26 light-years. Blame astronomers for the funny units in (6.3.29).
12Planck 2013 Results – Cosmological Parameters [arXiv:1303.5076].
13Notice that the definition of Sk(�) contains a length scale R0 after we chose to make the scale factor dimen-

sionless, a(t0) ⌘ 1. This is achieved by using the rescaling symmetry a ! �a, � ! �/�, and S2
k ! S2

k/�.
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• Angular diameter distance.—Sometimes we can make use of ‘standard rulers’, i.e. objects

of known physical size D. (This is the case, for example, for the fluctuations in the CMB.)

Let us assume again that the object is at a comoving distance � and the photons which

we observe today were emitted at time t1. A naive astronomer could decide to measure

the distance dA to the object by measuring its angular size �✓ and using the Euclidean

formula for its distance,14

dA =
D

�✓
. (1.2.72)

This quantity is called the angular diameter distance. The FRW metric (1.1.23) implies

source

observer

Figure 1.7: Geometry associated with the definition of angular diameter distance.

the following relation between the physical (transverse) size of the object and its angular

size on the sky

D = a(t1)Sk(�)�✓ =
dm
1 + z

�✓ . (1.2.73)

Hence, we get

dA =
dm
1 + z

. (1.2.74)

The angular diameter distance measures the distance between us and the object when

the light was emitted. We see that angular diameter and luminosity distances aren’t

independent, but related by

dA =
dL

(1 + z)2
. (1.2.75)

Fig. 1.8 shows the redshift dependence of the three distance measures dm, dL, and dA. Notice

that all three distances are larger in a universe with dark energy (in the form of a cosmological

constant ⇤) than in one without. This fact was employed in the discovery of dark energy (see

fig. 1.9 in §1.3.3).

1.3 Dynamics

The dynamics of the universe is determined by the Einstein equation

Gµ⌫ = 8⇡GTµ⌫ . (1.3.76)

This relates the Einstein tensor Gµ⌫ (a measure of the “spacetime curvature” of the FRW

universe) to the stress-energy tensor Tµ⌫ (a measure of the “matter content” of the universe). We

14This formula assumes �✓ ⌧ 1 (in radians) which is true for all cosmological objects.

dL = dm(1 + z)

⇠
p

Abs.lumi/Flux
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Figure 1.9: Type IA supernovae and the discovery dark energy. If we assume a flat universe, then the
supernovae clearly appear fainter (or more distant) than predicted in a matter-only universe (⌦m = 1.0).
(SDSS = Sloan Digital Sky Survey; SNLS = SuperNova Legacy Survey; HST = Hubble Space Telescope.)
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Figure 1.10: A combination CMB and LSS observations indicate that the spatial geometry of the universe
is flat. The energy density of the universe is dominated by a cosmological constant. Notice that the CMB
data alone cannot exclude a matter-only universe with large spatial curvature. The evidence for dark energy
requires additional input.

Single-Component Universe

The di↵erent scalings of radiation (a�4), matter (a�3) and vacuum energy (a0) imply that for

most of its history the universe was dominated by a single component (first radiation, then

matter, then vacuum energy; see fig. 1.11). Parameterising this component by its equation of

state wI captures all cases of interest. For a flat, single-component universe, the Friedmann

equation (1.3.135) reduces to
ȧ

a
= H0

p
⌦I a

� 3
2
(1+wI) . (1.3.136)

lo
g-

Supernovae are very bright (~galaxy!) & distant probes,  
with good absolute luminosity → probe a(t) beyond linear

Today
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Supernovae & The Accelerating Universe (history)

1998 (discovery)
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1.3. DYNAMICS

The dynamics of a(t) is determined by the Einstein equation:

Gµ⌫[a(t)]

“CURVATURE”

= 8⇡G Tµ⌫

“MATTER”

• ENERGY-MOMENTUM TENSOR

� number current
four-vector Nµ = (N0 , Ni) =

✓

number
density

, flux

◆

� energy-momentum
tensor Tµ⌫ =
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T00 T0i

Ti0 Tij
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energy
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energy
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density
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A comoving observer sees a homogeneous and isotropic universe i↵:

� Any 3-scalar is only a function of time N0 ⌘ n(t) T00 ⌘ ⇢(t)

� Any 3-vector vanishes Ni ⌘ 0 T0i ⌘ 0

� Any 3-tensor is proportional to gij Tij ⌘ �P (t)gij

Hence, Nµ = (n , 0) T µ
⌫ ⌘ gµ�T�⌫ =

0

B

B

B

@

⇢

�P

�P

�P

1

C

C

C

A

( perfect
fluid

A general observer sees

Nµ = nUµ T µ
⌫ = (⇢+ P )UµU⌫ � P �µ⌫

where
n : no. density
⇢ : energy density
P : pressure

9

=

;

in the rest frame
of the fluid

Uµ : relative 4-velocity

For Uµ = (1, 0, 0, 0) this reduces to the previous results.

For Uµ = �(1, vi) we get boosted quantities: e.g. N0 = �n, etc.
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for observer at rest in fluid

• CONSERVATION LAWS

1) Particle number

In Minkowski, the conservation of particle number implies

ṅ = �@iN
i () @µN

µ = 0

+
In curved spacetimes, this becomes rµN

µ = 0 = @µN
µ + �µ

µ�N
�

+

Using N i = 0 and �µ
µ0 = �i

i0 =
ȧ

a
�ii = 3

ȧ

a
, we get

ṅ

n
= �3

ȧ

a
) n / a�3 .

2) Energy and momentum

In Minkowski, the conservation of energy and momentum implies

continuity ⇢̇ = �@i⇡
i

Euler ⇡̇i = @iP

)

() @µT
µ
⌫ = 0

+

In curved spacetimes, this becomes rµT
µ
⌫ = 0 = @µT

µ
⌫ + �µ

µ�T
�
⌫ � ��

µ⌫T
µ
�

Consider the ⌫ = 0 component in FRW:

@µT
µ
0 + �µ

µ�T
�
0 � ��

µ0T
µ
� = 0

Since T i
0 = 0, this reduces to

d⇢

dt
+ �i

i0 ⇢� �i
j0T

j
i = 0

Using T j
i = �P �ji and �i

i0 = 3
ȧ

a
, we get ⇢̇+ 3

ȧ

a
(⇢+ P ) = 0

continuity
equation

or
d(⇢a3)

dt
= �P

d(a3)

dt

“dU = �PdV ”
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We get the FRIEDMANN EQUATIONS

✓

ȧ

a

◆2

=
8⇡G

3
⇢� k

a2

ä

a
= �4⇡G

3
(⇢+ 3P ) , ⇢̇ = �3

ȧ

a
(⇢+ P )

where ⇢ ⌘ ⇢� + ⇢⌫
| {z }

⇢r

+ ⇢c + ⇢b
| {z }

⇢m

+ ⇢⇤ .

In terms of the Hubble parameter,

the first Friedmann equation becomes
H2 =

8⇡G

3
⇢� k

a2
(?)

We will use a subscript ‘0’ to denote quantities today, at t = t0.

A flat universe (k = 0) corresponds to a critical density

⇢crit,0 =
3H2

0

8⇡G
= 1.9⇥ 10�29 h2 grams cm�3

= 2.8⇥ 1011 h2M�Mpc�3

For each component I = r,m,⇤, . . . ,

define the fractional density today as
⌦I ⌘

⇢I,0
⇢crit,0

Eq. (?) then becomes

H2(a) = H2
0

h

⌦r a
�4 + ⌦m a�3 + ⌦k a

�2 + ⌦⇤

i

,

where a0 ⌘ 1 and ⌦k ⌘
�k

(a0H0)2
.

Observations show that

|⌦k|  0.01 , ⌦r = 9.4⇥ 10�5 , ⌦m = 0.32 , ⌦⇤ = 0.68 ,

⌦b = 0.05 ,

⌦c = 0.27 ,

0.001 < ⌦⌫ < 0.02 .

We will from now on set ⌦k ⌘ 0.

11

Exercise: show that if 

• COSMIC INVENTORY

Classify sources by their equation of state w ⌘ P/⇢

For w = const. we can integrate
⇢̇

⇢
= �3(1 + w)

ȧ

a
, to get ⇢ / a�3(1+w) .

Name w ⇢ Examples

m MATTER 0 a�3 non-relativistic
particles

Cold Dark Matter
(CDM)

Baryons
(nuclei + electrons!)

c

b

r RADIATION
1

3
a�4 relativistic

particles

Photons

Neutrinos

Gravitons

�

⌫

g

⇤
DARK
ENERGY

�1 a0 “What the hell!? ”
Vacuum Energy

Modified Gravity

⇤

9

w ⌘ p/⇢ = const

1st eqn

2d eqn
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• COSMIC INVENTORY

Classify sources by their equation of state w ⌘ P/⇢

For w = const. we can integrate
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c

b

r RADIATION
1

3
a�4 relativistic

particles

Photons

Neutrinos

Gravitons

�

⌫

g

⇤
DARK
ENERGY

�1 a0 “What the hell!? ”
Vacuum Energy

Modified Gravity

⇤

9

Exercise: find an explanation, and a proof why ρr ∼ a -1/4 and  
what is the source of energy produced to keep ρΛ cte, despite expansion

Notice: ρ∝T4 

so T∝1/a
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We get the FRIEDMANN EQUATIONS
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ä

a
= �4⇡G

3
(⇢+ 3P ) , ⇢̇ = �3

ȧ
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H2 = H2
0 [
⌦r

a4
+

⌦m

a3
+ ⌦⇤ +

(1�
P

⌦i)

a2
]

= �Veff (a)/a
2

Combining all components

−a^2

 1 0.6 0.4 0.2 0

−2

−1.5

−1

−0.5

 0

−0.7 a^2 −0.3/a

−1/a

 0.8

Einstein static
universe

(with 0 energy: k is in V)

Example:  
matter + cosmo.const.  
there is a flat region  
in Veff  with a ≠ 0  
This was Einstein’s motivation
to introduce Λ (?!)
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Preface

This course is about 13.8 billion years of cosmic evolution:

At early times, the universe was hot and dense. Interactions between particles were frequent

and energetic. Matter was in the form of free electrons and atomic nuclei with light bouncing

between them. As the primordial plasma cooled, the light elements—hydrogen, helium and

lithium—formed. At some point, the energy had dropped enough for the first stable atoms

to exist. At that moment, photons started to stream freely. Today, billions of years later, we

observe this afterglow of the Big Bang as microwave radiation. This radiation is found to be

almost completely uniform, the same temperature (about 2.7 K) in all directions. Crucially, the

cosmic microwave background contains small variations in temperature at a level of 1 part in

10 000. Parts of the sky are slightly hotter, parts slightly colder. These fluctuations reflect tiny

variations in the primordial density of matter. Over time, and under the influence of gravity,

these matter fluctuations grew. Dense regions were getting denser. Eventually, galaxies, stars

and planets formed.

dark matter
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Structure
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Big Bang
Nucleosynthesis

dark matter (27%)

dark energy (68%)

baryons (5%)

present 
energy density

fra
ct

io
n 

of
 e

ne
rg

y 
de

ns
ity

1.0

0.0

(Chapter 3)

(Chapter 3)
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(Chapter 3)
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010

13.8 Gyr380 kyr3 min

0.1 MeV 0.1 eV0.1 TeV

This picture of the universe—from fractions of a second after the Big Bang until today—

is a scientific fact. However, the story isn’t without surprises. The majority of the universe

today consists of forms of matter and energy that are unlike anything we have ever seen in

terrestrial experiments. Dark matter is required to explain the stability of galaxies and the rate

of formation of large-scale structures. Dark energy is required to rationalise the striking fact that

the expansion of the universe started to accelerate recently (meaning a few billion years ago).

What dark matter and dark energy are is still a mystery. Finally, there is growing evidence

that the primordial density perturbations originated from microscopic quantum fluctuations,

stretched to cosmic sizes during a period of inflationary expansion. The physical origin of

inflation is still a topic of active research.

1

Universe Composition in Time
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Exercise: compare the particle horizon and Hubble radius (aH)-1 
at time t for a single fluid (w>-1/3). What is the value of τi ?

31 2. Inflation

2.1.2 Growing Hubble Sphere

It is the particle horizon that is relevant for the horizon problem of the standard Big Bang

cosmology. Eq. (2.1.3) can be written in the following illuminating way

�ph(⌧) =

Z t

ti

dt

a
=

Z a

ai

da

aȧ
=

Z ln a

ln ai

(aH)�1 d ln a , (2.1.5)

where ai ⌘ 0 corresponds to the Big Bang singularity. The causal structure of the spacetime

can hence be related to the evolution of the comoving Hubble radius (aH)�1. For a universe

dominated by a fluid with constant equation of state w ⌘ P/⇢, we get

(aH)�1 = H�1
0 a

1
2
(1+3w) . (2.1.6)

Note the dependence of the exponent on the combination (1 + 3w). All familiar matter sources

satisfy the strong energy condition (SEC), 1 + 3w > 0, so it used to be a standard assumption

that the comoving Hubble radius increases as the universe expands. In this case, the integral in

(2.1.5) is dominated by the upper limit and receives vanishing contributions from early times.

We see this explicitly in the example of a perfect fluid. Using (2.1.6) in (2.1.5), we find

�ph(a) =
2H�1

0

(1 + 3w)


a

1
2
(1+3w) � a

1
2
(1+3w)

i

�
⌘ ⌧ � ⌧i . (2.1.7)

The fact that the comoving horizon receives its largest contribution from late times can be made

manifest by defining

⌧i ⌘
2H�1

0

(1 + 3w)
a

1
2
(1+3w)

i

ai!0 , w>� 1
3�����������! 0 . (2.1.8)

The comoving horizon is finite,

�ph(t) =
2H�1

0

(1 + 3w)
a(t)

1
2
(1+3w) =

2

(1 + 3w)
(aH)�1 . (2.1.9)

We see that in the standard cosmology �ph ⇠ (aH)�1. This has lead to the confusing practice

of referring to both the particle horizon and the Hubble radius as the “horizon” (see §2.2.2).

2.1.3 Why is the CMB so uniform?

About 380 000 years after the Big Bang, the universe had cooled enough to allow the formation

of hydrogen atoms and the decoupling of photons from the primordial plasma (see §3.3.3). We

observe this event in the form of the cosmic microwave background (CMB), an afterglow of the

hot Big Bang. Remarkably, this radiation is almost perfectly isotropic, with anisotropies in the

CMB temperature being smaller than one part in ten thousand.

A moment’s thought will convince you that the finiteness of the conformal time elapsed

between ti = 0 and the time of the formation of the CMB, trec, implies a serious problem: it

means that most spots in the CMB have non-overlapping past light cones and hence never were

in causal contact. This is illustrated by the spacetime diagram in fig. 2.2. Consider two opposite

directions on the sky. The CMB photons that we receive from these directions were emitted at

the points labelled p and q in fig. 2.2. We see that the photons were emitted su�ciently close to

the Big Bang singularity that the past light cones of p and q don’t overlap. This implies that

no point lies inside the particle horizons of both p and q. So the puzzle is: how do the photons

30 2. Inflation

particle horizon at p

p

event horizon at p

comoving particle outside 
the particle horizon at p

Figure 2.1: Spacetime diagram illustrating the concept of horizons. Dotted lines show the worldlines of
comoving objects. The event horizon is the maximal distance to which we can send signal. The particle
horizon is the maximal distance from which we can receive signals.

• Particle horizon.—Eq. (2.1.2) tells us that the maximal comoving distance that light can

travel between two times ⌧1 and ⌧2 > ⌧1 is simply �⌧ = ⌧2�⌧1 (recall that c ⌘ 1). Hence, if

the Big Bang ‘started’ with the singularity at ti ⌘ 0,2 then the greatest comoving distance

from which an observer at time t will be able to receive signals travelling at the speed of

light is given by

�ph(⌧) = ⌧ � ⌧i =

Z t

ti

dt

a(t)
. (2.1.3)

This is called the (comoving) particle horizon. The size of the particle horizon at time ⌧

may be visualised by the intersection of the past light cone of an observer p with the

spacelike surface ⌧ = ⌧i (see fig. 2.1). Causal influences have to come from within this

region. Only comoving particles whose worldlines intersect the past light cone of p can

send a signal to an observer at p. The boundary of the region containing such worldlines

is the particle horizon at p. Notice that every observer has his of her own particle horizon.

• Event horizon.—Just as there are past events that we cannot see now, there may be future

events that we will never be able to see (and distant regions that we will never be able to

influence). In comoving coordinates, the greatest distance from which an observer at time

tf will receive signals emitted at any time later than t is given by

�eh(⌧) = ⌧f � ⌧ =

Z tf

t

dt

a(t)
. (2.1.4)

This is called the (comoving) event horizon. It is similar to the event horizon of black

holes. Here, ⌧f denotes the ‘final moment of (conformal) time’. Notice that this may be

finite even if physical time is infinite, tf = +1. Whether this is the case or not depends

on the form of a(t). In particular, ⌧f is finite for our universe, if dark energy is really a

cosmological constant.

2Notice that the Big Bang singularity is a moment in time, but not a point space. Indeed, in figs. 2.1 and 2.2

we describe the singularity by an extended (possibly infinite) spacelike hypersurface.

Future horizon

Past horizon

�ph(⌧) ⌘ ⌧ � ⌧i =

Z t

ti

dt

a(t)
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2.1.2 Growing Hubble Sphere

It is the particle horizon that is relevant for the horizon problem of the standard Big Bang

cosmology. Eq. (2.1.3) can be written in the following illuminating way

�ph(⌧) =

Z t

ti

dt

a
=

Z a

ai

da

aȧ
=

Z ln a

ln ai

(aH)�1 d ln a , (2.1.5)

where ai ⌘ 0 corresponds to the Big Bang singularity. The causal structure of the spacetime

can hence be related to the evolution of the comoving Hubble radius (aH)�1. For a universe

dominated by a fluid with constant equation of state w ⌘ P/⇢, we get

(aH)�1 = H�1
0 a

1
2
(1+3w) . (2.1.6)

Note the dependence of the exponent on the combination (1 + 3w). All familiar matter sources

satisfy the strong energy condition (SEC), 1 + 3w > 0, so it used to be a standard assumption

that the comoving Hubble radius increases as the universe expands. In this case, the integral in

(2.1.5) is dominated by the upper limit and receives vanishing contributions from early times.

We see this explicitly in the example of a perfect fluid. Using (2.1.6) in (2.1.5), we find

�ph(a) =
2H�1

0

(1 + 3w)


a

1
2
(1+3w) � a

1
2
(1+3w)

i

�
⌘ ⌧ � ⌧i . (2.1.7)

The fact that the comoving horizon receives its largest contribution from late times can be made

manifest by defining

⌧i ⌘
2H�1

0

(1 + 3w)
a

1
2
(1+3w)

i

ai!0 , w>� 1
3�����������! 0 . (2.1.8)

The comoving horizon is finite,

�ph(t) =
2H�1

0

(1 + 3w)
a(t)

1
2
(1+3w) =

2

(1 + 3w)
(aH)�1 . (2.1.9)

We see that in the standard cosmology �ph ⇠ (aH)�1. This has lead to the confusing practice

of referring to both the particle horizon and the Hubble radius as the “horizon” (see §2.2.2).

2.1.3 Why is the CMB so uniform?

About 380 000 years after the Big Bang, the universe had cooled enough to allow the formation

of hydrogen atoms and the decoupling of photons from the primordial plasma (see §3.3.3). We

observe this event in the form of the cosmic microwave background (CMB), an afterglow of the

hot Big Bang. Remarkably, this radiation is almost perfectly isotropic, with anisotropies in the

CMB temperature being smaller than one part in ten thousand.

A moment’s thought will convince you that the finiteness of the conformal time elapsed

between ti = 0 and the time of the formation of the CMB, trec, implies a serious problem: it

means that most spots in the CMB have non-overlapping past light cones and hence never were

in causal contact. This is illustrated by the spacetime diagram in fig. 2.2. Consider two opposite

directions on the sky. The CMB photons that we receive from these directions were emitted at

the points labelled p and q in fig. 2.2. We see that the photons were emitted su�ciently close to

the Big Bang singularity that the past light cones of p and q don’t overlap. This implies that

no point lies inside the particle horizons of both p and q. So the puzzle is: how do the photons



Horizon problem

• Q: How can points p and q (at opposite directions on the CMB sky) 
have equal temperatures (with precision 10-5 ) ???

• A: by giving them more time to talk, with a shrinking Hubble radius:  
                                     → want w<-1/3, e.g.  inflation (w=-1, H=ct)
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coming from p and q “know” that they should be at almost exactly the same temperature? The

same question applies to any two points in the CMB that are separated by more than 1 degree

in the sky. The homogeneity of the CMB spans scales that are much larger than the particle

horizon at the time when the CMB was formed. In fact, in the standard cosmology the CMB is

made of about 104 disconnected patches of space. If there wasn’t enough time for these regions

to communicate, why do they look so similar? This is the horizon problem.
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Figure 2.2: The horizon problem in the conventional Big Bang model. All events that we currently observe
are on our past light cone. The intersection of our past light cone with the spacelike slice labelled CMB
corresponds to two opposite points in the observed CMB. Their past light cones don’t overlap before they
hit the singularity, a = 0, so the points appear never to have been in causal contact. The same applies to
any two points in the CMB that are separated by more than 1 degree on the sky.

2.2 A Shrinking Hubble Sphere

Our description of the horizon problem has highlighted the fundamental role played by the

growing Hubble sphere of the standard Big Bang cosmology. A simple solution to the horizon

problem therefore suggests itself: let us conjecture a phase of decreasing Hubble radius in the

early universe,
d

dt
(aH)�1 < 0 . (2.2.10)

If this lasts long enough, the horizon problem can be avoided. Physically, the shrinking Hubble

sphere requires a SEC-violating fluid, 1 + 3w < 0.

2.2.1 Solution of the Horizon Problem

For a shrinking Hubble sphere, the integral in (2.1.5) is dominated by the lower limit. The Big

Bang singularity is now pushed to negative conformal time,

⌧i =
2H�1

0

(1 + 3w)
a

1
2
(1+3w)

i

ai!0 , w<� 1
3�����������! �1 . (2.2.11)

This implies that there was “much more conformal time between the singularity and decoupling

than we had thought”! Fig. 2.3 shows the new spacetime diagram. The past light cones of
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2.1.2 Growing Hubble Sphere

It is the particle horizon that is relevant for the horizon problem of the standard Big Bang

cosmology. Eq. (2.1.3) can be written in the following illuminating way

�ph(⌧) =

Z t

ti

dt

a
=

Z a

ai

da

aȧ
=

Z ln a

ln ai

(aH)�1 d ln a , (2.1.5)

where ai ⌘ 0 corresponds to the Big Bang singularity. The causal structure of the spacetime

can hence be related to the evolution of the comoving Hubble radius (aH)�1. For a universe

dominated by a fluid with constant equation of state w ⌘ P/⇢, we get

(aH)�1 = H�1
0 a

1
2
(1+3w) . (2.1.6)

Note the dependence of the exponent on the combination (1 + 3w). All familiar matter sources

satisfy the strong energy condition (SEC), 1 + 3w > 0, so it used to be a standard assumption

that the comoving Hubble radius increases as the universe expands. In this case, the integral in

(2.1.5) is dominated by the upper limit and receives vanishing contributions from early times.

We see this explicitly in the example of a perfect fluid. Using (2.1.6) in (2.1.5), we find

�ph(a) =
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The fact that the comoving horizon receives its largest contribution from late times can be made

manifest by defining
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The comoving horizon is finite,
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We see that in the standard cosmology �ph ⇠ (aH)�1. This has lead to the confusing practice

of referring to both the particle horizon and the Hubble radius as the “horizon” (see §2.2.2).

2.1.3 Why is the CMB so uniform?

About 380 000 years after the Big Bang, the universe had cooled enough to allow the formation

of hydrogen atoms and the decoupling of photons from the primordial plasma (see §3.3.3). We

observe this event in the form of the cosmic microwave background (CMB), an afterglow of the

hot Big Bang. Remarkably, this radiation is almost perfectly isotropic, with anisotropies in the

CMB temperature being smaller than one part in ten thousand.

A moment’s thought will convince you that the finiteness of the conformal time elapsed

between ti = 0 and the time of the formation of the CMB, trec, implies a serious problem: it

means that most spots in the CMB have non-overlapping past light cones and hence never were

in causal contact. This is illustrated by the spacetime diagram in fig. 2.2. Consider two opposite

directions on the sky. The CMB photons that we receive from these directions were emitted at

the points labelled p and q in fig. 2.2. We see that the photons were emitted su�ciently close to

the Big Bang singularity that the past light cones of p and q don’t overlap. This implies that

no point lies inside the particle horizons of both p and q. So the puzzle is: how do the photons
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Figure 2.3: Inflationary solution to the horizon problem. The comoving Hubble sphere shrinks during
inflation and expands during the conventional Big Bang evolution (at least until dark energy takes over at
a ⇡ 0.5). Conformal time during inflation is negative. The spacelike singularity of the standard Big Bang is
replaced by the reheating surface, i.e. rather than marking the beginning of time it now corresponds simply
to the transition from inflation to the standard Big Bang evolution. All points in the CMB have overlapping
past light cones and therefore originated from a causally connected region of space.

widely separated points in the CMB now had enough time to intersect before the time ⌧i. The

uniformity of the CMB is not a mystery anymore. In inflationary cosmology, ⌧ = 0 isn’t the

initial singularity, but instead becomes only a transition point between inflation and the standard

Big Bang evolution. There is time both before and after ⌧ = 0.

2.2.2 Hubble Radius vs. Particle Horizon

A quick word of warning about bad (but unfortunately standard) language in the inflationary

literature: Both the particle horizon �ph and the Hubble radius (aH)�1 are often referred to

simply as the “horizon”. In the standard FRW evolution (with ordinary matter) the two are

roughly the same—cf. eq. (2.1.9)—so giving them the same name isn’t an issue. However, the

whole point of inflation is to make the particle horizon much larger than the Hubble radius.

The Hubble radius (aH)�1 is the (comoving) distance over which particles can travel in the

course of one expansion time.3 It is therefore another way of measuring whether particles are

causally connected with each other: comparing the comoving separation � of two particles with

(aH)�1 determines whether the particles can communicate with each other at a given moment

(i.e. within the next Hubble time). This makes it clear that �ph and (aH)�1 are conceptually

very di↵erent:

3The expansion time, tH ⌘ H�1 = dt/d ln a, is roughly the time in which the scale factor doubles.



Exiting & entering the Hubble radius

Exercise: how many inflation e-folds (N=ln(aE/aI) are min. needed 
to fit the recombination Hubble radius (arecHrec)-1 inside a Hubble 
radius before inflation (aIHI)-1, if 
• after inflation, the universe is reheated to TE ≈ EGUT ≈ 1015 GeV
• assume a radiation domination (H∝a-2) up to Trec ≈ 10-1 eV
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• if � > �ph, then the particles could never have communicated.

• if � > (aH)�1, then the particles cannot talk to each other now.

Inflation is a mechanism to achieve �ph � (aH)�1. This means that particles can’t communi-

cate now (or when the CMB was created), but were in causal contact early on. In particular,

the shrinking Hubble sphere means that particles which were initially in causal contact with

another—i.e. separated by a distance � < (aIHI)�1—can no longer communicate after a suf-

ficiently long period of inflation: � > (aH)�1; see fig. 2.4. However, at any moment before

horizon exit (careful: I really mean exit of the Hubble radius!) the particles could still talk

to each other and establish similar conditions. Everything within the Hubble sphere at the

beginning of inflation, (aIHI)�1, was causally connected.

Since the Hubble radius is easier to calculate than the particle horizon it is common to use

the Hubble radius as a means of judging the horizon problem. If the entire observable universe

was within the comoving Hubble radius at the beginning of inflation—i.e. (aIHI)�1 was larger

than the comoving radius of the observable universe (a0H0)�1—then there is no horizon problem.

Notice that this is more conservative than using the particle horizon since �ph(t) is always bigger

than (aH)�1(t). Moreover, using (aIHI)�1 as a measure of the horizon problem means that we

don’t have to assume anything about earlier times t < tI .

time

scales

reheating
inflation “ Big Bang ”

standard Big Bang

inflation

Figure 2.4: Scales of cosmological interest were larger than the Hubble radius until a ⇡ 10�5 (where today is
at a(t0) ⌘ 1). However, at very early times, before inflation operated, all scales of interest were smaller than
the Hubble radius and therefore susceptible to microphysical processing. Similarly, at very late times, the
scales of cosmological interest are back within the Hubble radius. Notice the symmetry of the inflationary
solution. Scales just entering the horizon today, 60 e-folds after the end of inflation, left the horizon 60
e-folds before the end of inflation.

Duration of inflation.—How much inflation do we need to solve the horizon problem? At the very
least, we require that the observable universe today fits in the comoving Hubble radius at the begin-
ning of inflation,

(a0H0)
�1 < (aIHI)

�1 . (2.2.12)

Let us assume that the universe was radiation dominated since the end of inflation and ignore the
relatively recent matter- and dark energy-dominated epochs. Remembering that H / a�2 during
radiation domination, we have

a0H0

aEHE
⇠ a0

aE

✓
aE
a0

◆2

=
aE
a0

⇠ T0

TE
⇠ 10�28 , (2.2.13)

Comoving



A model: slow roll of «inflaton»
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2.3 THE PHYSICS OF INFLATION

Inflation occurs: " = � Ḣ

H2
= �d lnH

dN
< 1, where dN ⌘ d ln a = Hdt.

Inflation lasts: ⌘ =
d ln "

dN
=

"̇

H"
< 1

What microphyscis leads to {", |⌘|} < 1?

Scalar Field Dynamics

Inflation is often modelled by the evolution of a scalar field � (the inflaton)
with energy density V (�) (the inflaton potential):

The stress-energy tensor associated with the inflaton is

Tµ⌫ = @µ�@⌫�� gµ⌫

✓

1

2
g↵�@↵�@��� V (�)

◆

Let us evaluate this for a homogeneous field � = �(t):

⇢� ⌘ T 0
0 =

1

2
�̇2 + V (�) (= KE + PE)

P� ⌘ �1

3
T i

i =
1

2
�̇2 � V (�) (= KE� PE)
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Conditions:
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For scalar « inflaton » field in potential:

We then feed this into the Friedmann equations

H2 =
⇢�

3M 2
pl

=
1

3M 2
pl



1

2
�̇2 + V

�

(F1) Mpl ⌘
r

~c
8⇡G

Ḣ = �⇢� + P�

2M 2
pl

= �1

2

�̇2

M 2
pl

(F2)

Take a time derivative of (F1)

2HḢ =
1

3M 2
pl

h

�̇�̈+ V 0�̇
i

, where V 0 ⌘ dV

d�

and use (F2) to get the Klein-Gordon equation:

�̈

ACCELERATION

+ 3H�̇

FRICTION

= � V 0

FORCE

(KG)

The ratio of (F2) and (F1) gives " =
1
2�̇

2

M 2
plH

2
< 1 .

Inflation occurs if the KE is small = slow-roll inflation

For inflation to last the acceleration should be small: � ⌘ � �̈

H�̇
< 1

It is easy to show that ⌘ =
"̇

H"
= 2("� �).

The conditions {", |�|} ⌧ 1 imply {", |⌘|} ⌧ 1.

20

Slow Roll (SR)

Stays Slow (SS)So far, this was exact. Now, we make the slow-roll approximation:

1) " =
1
2�̇

2

M 2
plH

2
⌧ 1 ) H2 ⇡ V

3M 2
pl

(F)SR

2) |�| = |�̈|
H|�̇|

⌧ 1 ) 3H�̇ ⇡ �V 0 (KG)SR

(KG)SR
#

• Hence, we find " =
1
2�̇

2

M 2
plH

2
⇡

M 2
pl

2

✓

V 0

V

◆2

⌘ ✏v

"
(F)SR

• Next, we consider
d

dt
(KG)SR ) 3Ḣ�̇+ 3H�̈ = �V 00�̇, which leads to

"+ � ⇡ M 2
pl

V 00

V
⌘ ⌘v

Successful SR inflation occurs when {✏v, |⌘v|} ⌧ 1 :
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physical
length

scale factor

inflation
radiation

domination

wavelength λ of a
density fluctuation

horizon scale
~ 1/H

λ > 1/H
fluctuation
frozen in

λ < 1/H
fluctuation

evolves

The origin of the primordial 
perturbations: inflation

reheating

Quantum fluctuations of ϕ are
stretched beyond the horizon 

and freeze in
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Hamann, Moriond’14



  

Inflationary perturbations

Scalar (curvature) perturbations

Tensor perturbations (gravitational waves)

scalar/tensor
spectral index

scalar/tensor
amplitude

Tensor-to-Scalar
ratio

39 Hamann, Moriond’14



  

Implications of BICEP2 results

Energy scale of inflation:

[BICEP2 2014]

(This could in principle have been as low as O(10) MeV, we are incredibly lucky!)40
Hamann, Moriond’14



  

Inflation model constraints
(post BICEP2)

BICEP2 constraint on
tensor-to-scalar ratio

41 Hamann, Moriond’14

(if taken seriously!)



CMB observables  

42



Planck at L2

⇠ 8x8 degree field

Continuous observations (7 months ! all sky)
redundancies on different timescales (systematics)
Calibration accuracies .5%! 10% , beams ⇠ 5! 30 arcmin

O. Perdereau Planck 2013 Moriond EW 2014 6 / 2843



Planck 2013 CMB temperature anisotropies map

4 methods compared in : Planck 2013 results. XII. Component separation

O. Perdereau Planck 2013 Moriond EW 2014 9 / 2844



Cosmological parameter analysis in a nutshell

Spherical harmonic decomposition (� ⇠ 1/angle) :

�T

T
(�,�) =
X

�

X

m
a�mY�m(�,�)

general assumption ) a�m are random variables (gaussian p.d.f.) ; ha�mim = 0 ;
all information contained in their variance

C� =
1

2�+ 1

X

m
a�ma

†
�m

predicted by our model
only one realization is observable ! intrinsic dispersion wrt model (“cosmic
variance”)
Planck 2013 analysis : 100, 143 and 217 GHz maps cross spectra (suppression
of instrumental noise) with masks () low foregrounds contamination) (high �) ;
CMB map ML (low �)
fit cosmological parameters using a likelihood function (accounting for CMB,
residual foregrounds, instrumental nuisance parameters - ⇠ 20 parameters)

O. Perdereau Planck 2013 Moriond EW 2014 10 / 2845



CMB TT power spectrum (Planck 2013)

output of Planck likelihood - foregrounds subtracted

Hybrid method : map based ML (low �) / pseudo-spectra (high �) of masked raw maps

O. Perdereau Planck 2013 Moriond EW 2014 11 / 2846
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CMB polarization anisotropies

CMB is (weakly) polarized
polarization = vector field ) use Stockes parameters Q
and U
decompose Q+ iU in the (spinned) spherical harmonics
basis

Q+ iU =
X
±2alm ±2Ylm(�,�)

transform into parity even (E) and odd (B) components :

±2alm = aElm ± ia
B
lm

As for temperature, all information contained in variances
CXY
� (X,Y = T,E,B)

in general 6 power spectra but symetries ) CTB
� = CEB

� = 0

O. Perdereau LAL Bicep2 results Moriond EW 2014 3 / 13
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CMB polarization

Mecanism : temperature
quadrupolar anisotropies + Thomson
scattering on e

Origins :
… primordial tensor modes (GW)
! B modes

… plasma dynamics (correlation
with temp. anisotropies) ! E
modes

… late time re-ionisation (z ⇠ 10)
! E modes (low �)

… gravitational lensing transforms
(part of) E into B modes

very low amplitude signals
(⇠ 10�2 � 10�4 temperature)
amplitude of primordial B modes
power spectrum measures r = At/As
(� inflation energy scale)

O. Perdereau LAL Bicep2 results Moriond EW 2014 4 / 13



March 2014...Bicep2/Keck Array!

the B-mode excess seen by BICEP2 is 
consistent with Galactic dust emission, 
and no significant evidence for primordial 
gravitational waves is found. !
⇒ Upper limit r<0.12 @95%CL !
(r is the tensor over scalar ratio)!

September 2014...answer from Planck!

=> The polarized dust contamination cannot!
be neglected !

« A Joint Analysis of BICEP2/Keck Array and Planck Data »     arXiv:1502.00612!

December 2014... joint Bicep2/Keck Array/Planck analysis!

Moriond EW 2015 ! ! ! ! ! ! ! !  ! ! !          S. Henrot-Versillé!

15! Primordial gravitational waves ?!
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Sum of the Neutrino Masses!

Moriond EW 2015 ! ! ! ! ! ! ! !  ! ! !          S. Henrot-Versillé!

12!

(95%CL limit)!

PlanckTT+LowP+Lensing+BAO+SN/JLA+H0!

Σ(mν)<0.23eV!

⇒ Impact on the first acoustic peak !
⇒ + small scales!

Combined with oscillations measurements!
⇒ Starting to test the hierarchy soon ?!?!

(cf. yesterday’s talk : E. lisi, S. Choubey,!
T. Johnson,...)!
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Neff!
Neff is the effective number of relativistic degrees of freedom!
!
Under the assumption that ONLY photons and standard light neutrinos!
contribute to the radiation:!
!
⇒  Neff is the effective number of neutrinos and ��3.046 !
Any deviation from this value can be attributed to sterile neutrinos, 
axions, lepton number violation (cf. yesteday J. Heeck’s talk) primordial 
gravitational waves (GW)...!
!

No convincing evidence for extra relativistic!
component!

Moriond EW 2015 ! ! ! ! ! ! ! !  ! ! !          S. Henrot-Versillé!

13!

Accuracy with Polarization:!



The “base” ΛCDM Model!
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6 parameters:!
Ωbh2! ! !Baryon density!
Ωcdmh2! ! !Cold Dark Matter density!
θMC! ! ! !Characteristic angular size of the !

! ! ! !CMB fluctuations !
τ ! ! !Optical depth to reionization!
ln(1010As!)! !Amplitude and index of primordial!
ns!!! ! ! ! !fluctuations!
With Σ(mν) fixed to 0.06eV !

Very good agreement!
between temperature!
and polarization results ! !
!
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The “base” ΛCDM Model!
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6 parameters:!
Ωbh2! ! !Baryon density!
Ωcdmh2! ! !Cold Dark Matter density!
θMC! ! ! !Characteristic angular size of the !

! ! ! !CMB fluctuations !
τ ! ! !Optical depth to reionization!
ln(1010As!)! !Amplitude and index of primordial!
Ns!!! ! ! ! !fluctuations!
With Σ(mν) fixed to 0.06eV !

Very good agreement!
between temperature!
and polarization results ! !
!
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Dark Matter
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Credits to Ibarra, Cargese School 2014



Dark matter needed!
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distancepc kpc Mpc Gpc

Solar

system Galaxies
Clusters 

of galaxies
Observable 

Universe

There is evidence for dark matter 
in a wide range of distance scales
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1- Apply the virial theorem to determine the total mass of the Coma Cluster

For an isolated self-gravitating system,

2- Count the number of galaxies (1000) and calculate the average mass
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Galaxy



60

ExpectedExpected
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A modern technique: gravitational lensing
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Abell 1689
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Abell 1689
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  Bullet Cluster (1E 0657-56)Optical ImageOptical Image

“A direct empirical proof of the existence of dark matter”

Clowe, et al.,  Astrophys.J.648:L109-L113,2006. 
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  X-ray ImageX-ray Image
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  Weak lensing ImageWeak lensing Image
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  Composite ImageComposite Image
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Abell 520MACS J0025.4-1222 



From Planck/CMB
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http://lambda.gsfc.nasa.gov/education/cmb_plotter/lambda.gsfc.nasa.gov/education/cmb_plotter/

lambda.gsfc.nasa.gov/education/cmb_plotter/

http://lambda.gsfc.nasa.gov/education/cmb_plotter/
http://lambda.gsfc.nasa.gov/education/cmb_plotter/
http://lambda.gsfc.nasa.gov/education/cmb_plotter/
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What do we know 
about dark matter?



71

  

1) It is dark. No electric charge.

 If it has positive charge, it can form a bound state X+e-, an 
    “anomalously heavy hydrogen atom”.

 If it has negative charge, it can bind to nuclei, forming 
   “anomalously heavy isotopes”.

Perl et al.
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2) It is not made of baryons.

Primordial 

nucleosynthesis
Cosmic Microwave 

Background radiation

MACHOs (planets, brown dwarfs, etc.) are excluded

as the dominant component of dark matter.
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3) It was “slow” at the time of the formation of the
first structures.

Springel, Frenk, White
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To summarize, observations indicate that the dark matter is 

constituted by particles which have:

 No electric charge, no color.

 No baryon number.

 Low velocity at the time of structure formation.

 Lifetime longer than the age of the Universe.
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Annihilation of DM
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Main results from this part

SM
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Relic abundance of DM particles

Correct relic density if

(provided )

WIMP dark matter
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Notes
Sean Carroll: Lecture Notes on GR
Baumann cosmology course
Ibarra lectures on Dark Matter @ Cargese 2014

Moriond Talks:
Rocchi’16: 1st observation of Grav. Waves 
Nagar’16: th. predictions of merger GW signals
Saviano’15: neutrinos in cosmology (N_eff)
Billard’15: neutrino bkgd for DM DD
Henrot-Versillé’15: Planck results
Kusenko’15: baryogenesis alternative
Branchina’15: EW stability
Salvio’15: scales & inflation
LUX’14: DM best limits
Hamann’14: nice inflation course 
Perdereau’14: good intro
Perdereau onBICEP’14: polarisation
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http://arxiv.org/pdf/gr-qc/9712019.pdf
http://www.damtp.cam.ac.uk/user/db275/Inflation/Lectures.pdf
https://indico.cern.ch/event/282015/contribution/14/attachments/518377/715171/Ibarra_1.pdf

