Physics at Future Colliders

- Lecture 1 (Thursday 28 July, 10:20)
 - An historical perspective (1964-2014): The need for precision and energy
 - A strategy for the future: Towards the precision and energy frontier
 - The short-term perspectives (2020-2035): The HL-LHC
- Lecture 2 (Friday 29 July, 9:15)
 - The quest for precision (2030-2050): Linear or Circular ?
- Lecture 3 (Friday 29 July, 10:20)
 - The energy frontier (2045-2080): Leptons or Hadrons ?
 - Thinking out of the box: Muon collider
 - Towards the next European Strategy update (2019-2020)

An historical perspective (1964-2014): The need for precision and energy

1964-1974: The rise of the standard model

Very little was known experimentally

Mostly theoretical advances

- + Discovery of CP violation in the K°_L → ππ decays (Kronin, Finch: 1964)
- + Discovery of neutral currents $v_{\mu}e \rightarrow v_{\mu}e$ (Gargamelle: 1973)

- 1964: Spontaneous symmetry breaking mechanism (Brout-Englert, Higgs)
- 1967: Unification of electroweak interactions (Glashow, Weinberg, Salam)
 - With $m_{\gamma} = 0$, $m_{W} = m_{Z} \cos \theta_{W}$ and a Higgs boson
- 1970: Prediction of the c quark (Glashow, Illiopoulos, Maiani)
- 1971: Elucidate quantum structure of electroweak interactions (t'Hooft, Veltman)
 - Predicts and computes quantum corrections
- 1973: Six quarks needed for CP violation (Kobayashi, Maskawa)
- 1974: Complete formulation of the standard model ! (Illiopoulos)

1974-1984: The rise of centre-of-mass energy

• Collisions at large \sqrt{s} : A-priori obvious way to discover heavier particles

Year	Discovery	Experiment	√s (GeV)	Observation
1974	c quark (m~1.5 GeV)	e⁺e [–] ring (SLAC) Fixed target (BNL)	3.1 8	$\sigma(e^+e^- → J/Ψ)$ J/Ψ→μ ⁺ μ ⁻
1975	τ lepton (m=1.777 GeV)	e⁺e⁻ ring (SLAC)	8	e ⁺ e ⁻ → τ + τ - e ⁺ μ ⁻ events
1977	b quark (m~4.5 GeV)	Fixed target (FNAL)	25	Ƴ →μ+μ -
1979	gluon (m = o)	e⁺e [−] ring (DESY)	30	e⁺e [−] → qq̄g Three-jet events
1983	W, Z (m ~ 80, 91 GeV)	pp ring (CERN)	900	$ \begin{array}{c} W \to I_V \\ Z \to I^+I^- \end{array} $

- Standard model particle spectrum is filling up quickly
 - Three families, but top quark and neutrino tau missing
 - Higgs boson missing but $m_w \sim m_z \cos \theta_w$: smoking gun for the Higgs mechanism
- Quantum structure not tested: requires precision measurements

1987-2011: The rise of precision (1)

- 1987/1989: Start of SLC (linear e⁺e⁻ collider) and LEP (e⁺e⁻ collider ring)
 - Much larger luminosity at LEP, much faster commissioning
 - 1989@LEP: Only three species of light, active, neutrinos v_e , v_{μ} , and v_{τ}
 - $e^+e^- \rightarrow Z \rightarrow hadrons at LEP_1$, measurement of the line shape

Discovery confirmed in 1996 with $W \rightarrow \tau v_{\tau}$

1987-2011: The rise of precision (2)

- What's the use of such a precision anyway ?
 - 1994 : Prediction of the top quark mass
 - Remember quantum corrections from t'Hooft and Veltman work (1971)?

1987-2011: The rise of precision (3)

- 1995-2011: Testing the quantum structure of the standard model
 - 1995: Discovery of the top quark at the Tevatron (D0, CDF)
 - 1995-2011: Measurement of m_{top} (Tevatron)
 - m_{top}(Obs.) = 173.2 ± 0.9 GeV
 - m_{top}(Pred.) = 178.0 ± 4.3 GeV [LEP/SLD/m_w, for m_H = 150 GeV]
 - 1997-2011: Measurement of m_w (LEP2, Tevatron)
 - m_w(Obs.) = 80385 ± 15 MeV
 - m_w(Pred.) = 80363 ± 20 MeV [LEP/SLD/m_{top}]
 - 1999: Nobel Prize for t'Hooft and Veltman
 - Standard Model almost complete
 - Only the Higgs boson is missing, but ...
 - Prediction from Higgs mechanism
 - $m_W^2 = m_Z^2 \cos^2 \theta_W (1 + \Delta \rho)$
 - Verified !

1987-2011: The rise of precision (4)

March 2012

6

- **1989-2011: Looking for the Higgs boson's imprint**
 - 1999-2011: The Higgs boson is cornered by all precision measurements
 - Remember (for example)

•
$$m_W^2 = m_Z^2 \cos^2 \theta_W (1 + \Delta \rho)$$

$$\Delta \rho = \frac{\alpha}{\pi} \frac{m_t^2}{m_Z^2} - \frac{\alpha}{4\pi} \operatorname{Log} \frac{m_H^2}{m_Z^2} + \cdots$$

 $m_{Limit} = 152 \text{ GeV}$

Theory uncertainty

 $\Delta \alpha_{had}^{(5)} =$

2012-14: The SM becomes the standard theory

- 2012-2014: The Higgs boson era
 - 2012: Discovery of the standard model Higgs boson at the LHC (ATLAS, CMS)
 - m_H = 125.4 ± 0.5 GeV (ATLAS), 125.0 ± 0.3 GeV (CMS)
 - Mass, couplings, spin, width in agreement with Standard Theory predictions
 - 2010-2013: No new physics found at the LHC Run1 at the TeV scale

And now, what?

- The standard model has become the Standard Theory
 - It explains/describes all observations and measurements from high-energy colliders •
 - It is also able, in principle, to predict all measurements at future colliders

► As well as the fate of the Universe ...

On the theory side, no new physics is needed beyond this Standard Theory ٠

Is it the end?

It is not the end !

- **•** There is something beyond the standard theory
 - Many experimental proofs, e.g.,
 - Cosmological dark matter (DM)
 - Baryon asymmetry of the Universe (BAU)
 - Non-zero, but very small, neutrino masses
 - A mathematical hint : the small Higgs boson mass.

- Often heard: New physics must be "around the corner"
 - Problem: there is no corner (so far) ... and not much of theoretical guidance
 - Is new physics at larger masses ? Or at smaller couplings ? Or both ?
 - Only way to find out: go look, following the historical approach:
 - Direct searches for new heavy particles

Need colliders with larger energies

- → Searches for the imprint of new physics on W, Z, top, and Higgs properties
 - Need colliders / measurements with <u>unprecedented accuracy</u>

Precision vs Energy (1)

• The standard theory is complete ? Obviously three pieces missing !

н

Higgs

spin 0

- Three right-handed neutrinos ?
 - Extremely small couplings, nearly impossible to find, but could explain it all !
 - Small m_v (see-saw), DM (light N₁), and B.A.U. (leptogenesis)
- Need very-high-precision experiments to unveil
 - Could cause a slight reduction (increase) of the Z (H) invisible decay width
 - Could open exotic Z and Higgs decays: $Z, H \rightarrow v_i N_i$
 - Possibly measurable / detectable in precision e⁺e⁻ colliders
 - Almost certainly out of reach for hadron colliders (small couplings)

Precision vs Energy (2)

Others lean towards higher-energy replicas of the standard theory

- Direct searches at larger energies may be the key but how much larger ?
 - Rare decays and precise measurements may also unveil these extension's imprints

Lecture 1 (cont'd)

A Strategy for the future: Towards the precision and energy frontiers

Short-term perspectives (2020-2035)

- **In May 2013, European Strategy said (very similar statements from US)**
 - Exploit the full potential of the LHC until ~2035 as the highest priority
 - Get 75-100 fb⁻¹ at 13-14 TeV by 2018-2019 (LHC Run2: running)
 - Get ~300 fb⁻¹ at 14 TeV by 2022-2023
- (LHC Run3: approved)
- Upgrade machine and detectors to get 3 ab⁻¹ at 14 TeV by 2035 (HL-LHC: approved)
 - ➡ A first step towards both energy and precision frontier

Long-term perspectives (2045-2080)

- In May 2013, European Strategy said (very similar statements from US)
 - Perform R&D and design studies for high-energy frontier machines at CERN
 - HE-LHC, a programme for an energy increase to 33 TeV in the LHC tunnel
 - FCC, a 100-km circular ring with a pp collider long-term project at $\sqrt{s} = 100$ TeV

(50 or 70km) in China

Roidaihe

Google earth

Yifang Wang

Qinhuangdao (秦皇岛)

• CLIC, an e^+e^- collider project with \sqrt{s} from 0.3 to 3 TeV

28-29 July 2016

Mid-term perspectives (2030-2045)

- **In May 2013, European Strategy said (very similar statements from US)**
 - Acknowledge the strong physics case of e^+e^- colliders with intermediate \sqrt{s}
 - Participate in ILC if Japan government moves forward with the project
 - In the context of the FCC, perform accelerator R&D and design studies
 - ► For a high-luminosity, high-energy, circular e⁺e⁻ collider as potential first step

FCC (100 km) First step: FCC-ee (88-370GeV) [Use the tunnel ultimately aimed at FCC-hh]

Note: CLIC can also run at √s ~ 380 GeV in ~2035-2040

Patrick Janot

Can / should we do everything ? (1)

- **The cost (10's B\$) and challenges of these projects are paramount**
 - A choice will have to be made at one point, but it would be too early to make it now
 - The LHC, indeed, is still in its early infancy

- The 14 TeV Run2 is just starting: new data might bring a whole new light on the process
 - Next check point after LHC Run2 for the next European strategy update in 2019-20

Can / should we do everything ? (2)

- Hand-waving anticipation: With the 14 TeV LHC Run2 data, we may
 - Find a new heavy particle (or new heavy particles)
 - The (HL-) LHC will study this (these) particles to some extent
 - If m < 3 TeV, CLIC become interesting (if copiously produced in e^+e^- or $\gamma\gamma$ collisions)
 - Larger energies might be needed to find & study the whole new spectrum (FCC-hh)
 - An e⁺e⁻ Z factory (FCC-ee) will be unique to study the underlying quantum structure
 - Note: m_H and m_{top} were predicted without the need of additional new physics
 New physics will probably be very difficult to find anyway
 - Find no new particle, but finds a hint for non-standard Higgs properties
 - The (HL-) LHC will improve the precision on these measurements to some extent
 - e⁺e⁻ factories for Higgs (ILC, FCC-ee) and Z (FCC-ee) become very interesting machines
 - Push the energy frontier to its limits (CLIC, FCC-hh)
 - Find no new particle, standard Higgs properties
 - Push precision measurements to their limits (FCC-ee)
 - Possibly push energy frontier to its limits (CLIC, FCC-hh)

• Let's now try to quantify the respective merits of all options.

Lecture 1 (cont'd)

The short-term perspectives (2020-2035) The (HL)-LHC: Physics prospects

Expected integrated luminosity at HL-LHC

- **•** The High Lumi upgrade of the LHC is an ambitious project
 - Target is to deliver ~10 times more luminosity (3 ab⁻¹) than the first 10 LHC years

- Project timeline driven by radiation damage to machine components
 - Expected end of lifetime around 2023
- The results of the LHC Run2 in 2018 might argue for even more luminosity
 - But what do we do if there is no hint for new physics by then ?

Expected pile-up interactions at HL-LHC (1)

Two very distinct stages of operation, indeed

- LHC Run 2 (and, to a lesser extent, Run 3)
 - Conditions similar to those of LHC Run 1 for "in-time" pile-up
 - Increase of "out-of-time" pile-up from the 50 → 25 ns bunch separation
- + HL-LHC
 - Tremendous increase of "in-time" and "out-of-time" pile-up and of radiation

Expected pile-up interactions at HL-LHC (2)

- Why do we care ?
 - A simulated $H \rightarrow ZZ \rightarrow ee\mu\mu$ with o, 2, 20 and 200 in-time PU events ($p_T^{cut} = 1 \text{ GeV}$)

Expected pile-up interactions at HL-LHC (3)

- Why do we care ? (cont'd)
 - Heavy new particles like to decay to Z, W, H, top, dark-matter particles
 - Which in turn give characteristic signatures
 - Isolated leptons (e, μ , τ) and photons
 - Missing transverse energy (neutrinos, DM, ...)
 - ➡ High-p_T b-quark jets
 - If nothing is done, intense pile-up degrades
 - The reconstruction of charged particle tracks
 - ➡ CPU, Fakes, Efficiency, b tagging
 - The separation of calorimetric clusters
 - Particle flow reconstruction performance
 - The effectiveness of isolation cuts
 - ➡ Lepton selection
 - The missing transverse energy resolution
 - Dominated by pile-up + all the above
 - The trigger capabilities a killer !
 - Vigorous detector/trigger/software/algorithmic upgrades required at HL-LHC

Phase 2 CMS upgrades

Muon System

- New DT/CSC BE/FE electronics
- GEM/RPC coverage in 1.5< $|\eta|$ <2.4
- Muon-tagging in 2.4< $|\eta|$ <3.0

Barrel Calorimeter

- New BE/FE electronics
- ECAL: lower temperature
- HCAL: partially new scintillator

Endcap Calorimeter

- High-granularity calorimeter
- Radiation-tolerant scintillator
- 3D capability and timing

Tracker

- Radiation tolerant, high granularity, low material budget
- Coverage up to $|\eta|=3.8$
- Track-trigger at L1

Trigger and DAQ • Track-trigger at L1 • L1 rate ~ 750kHz • HLT output ~ 7.5kHz

Phase 1 and 2 ATLAS upgrades

ATLAS Phase 1 upgrades (2019-2020)

Main target:

- Better trigger capabilities (efficiency, fake rejection)
- Maintain same acceptance/ $p_{\rm T}$ thresholds at higher pileup

ATLAS phase 2 Upgrades for HL-LHC (2024-2026)

Phase 1 LHCb upgrades

- New time-of-flight measurement: TORCH
 - Improved identification capabilities
- Calorimeter and muon upgrades
 - To stand 50 fb⁻¹

Physics prospects with HL-LHC (1)

• Preliminary remarks

- The HL-LHC project has just been formally approved
- The final design choices for the upgraded detectors have just been made
- As a consequence, a full simulation of the upgraded detectors is not yet available
 - Event reconstruction will need significant developments
 - ➡ Future performance for physics studies can only be inferred
- The projections presented in the coming slides
 - Are often based on either parametric or fast simulations (or even extrapolations)
 - Rely on a number of assumptions (may be realistic ... or not)
 - On the effect of pile-up on detector and reconstruction performance
 - On the statistical improvement of systematic uncertainties
 - On the improvement of theory calculations
 - Use simplified physics models, for simplified conclusions
 - But give a reasonably optimistic idea of the HL-LHC physics prospects
- A lot of work remains to be done (BY YOU) from detector R&D to physics analyses

Physics prospects with HL-LHC (2)

- Physics programme at the (HL-)LHC in a nutshell
 - Electroweak physics
 - Measure top (and W?) masses, rare top decays
 - Measure triple and quartic gauge couplings
 - Study vector boson scattering
 - Higgs physics
 - Measure Higgs couplings to other particles, rare Higgs decays
 - Measure Higgs self-coupling
 - Measure Higgs mass, width, CP, ...
 - Search for new heavy physics
 - Supersymmetry
 - Extra-dimensions (new resonances, black holes)
 - Quark substructure (compositeness)
 - Fourth generation
 - New gauge bosons
 - Flavour physics
 - Indirect sensitivity to very heavy new physics (10 10⁵ TeV)
 - Only a few highlights are given here. Details in Gautier's, Gustaaf's, and Tim's lectures.

G. Hamel de Monchenault

G. Hamel de Monchenault

G. Brooijmans

T. Gershon

Physics prospects with HL-LHC (3)

- Physics programme at the LHC in a nutshell (cont'd)
 - The energy increase from Run1 (7/8 TeV) to Run2 (13/14 TeV) is very exciting

- More energy buys a lot, both for precision and new physics reach ٠
 - Cross sections multiplied by 3, 5, 10, 100 at m = 0.1, 0.35, 1 and 3 TeV
 - Mass reach for new physics roughly doubled

Precision Higgs physics (1)

Reminder: production and decays

Want to test if the Higgs particle couples as predicted by the Standard Model ٠

$m_{\rm H} = 125 {\rm GeV} \qquad \qquad \sqrt{\rm S} = 7 {\rm TeV}$			
Process	Diagram	Cross section [fb]	Unc. [%]
gluon-gluon fusion	19520		15
vector boson fusion	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1578	3
wн	dour	697	4
ZH	daar with it	394	5
ttH	a	130	15

<mark>m_H = 125 GeV</mark>		22
Decay	BR [%]	Unc. [%]
bb	57.7	3.3
тт	6.32	5.7
сс	2.91	12.2
μμ	0.022	6.0
ww	21.5	4.3
gg	8.57	10.2
zz	2.64	4.3
YY	0.23	5.0
Zγ	0.15	9.0
ГН [MeV]	4.07	4.0

* uncertainties need improvements for future precision measurements

Precision Higgs physics (2)

- Higgs couplings after Run1
 - 1400 Higgs events after selection
 - Measured couplings so far:
 - With access to rare decays ATLAS and CMS Preliminary LHC Run 1 → $H \rightarrow \mu\mu$, Zy ... κ₇ $\kappa_v \leq 1$ BR_{BSM}=0 10000000 Total Events 1σ κ_{W} Non-hadronic $\pm 2\sigma$ 10000000 κ_t 1000000 Kτ 100000 κ_b 10000 κ_a 1000 κ_{v} 100 BR_{BSM}, 10 WW ΖZ Zγ bb π μμ СС gg YY J/ψγ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Parameter value Typical precision: 15 to 50% Typical precision: 2 to 10% ٠
- Z, W, top, b, τ , g and γ

- □ HL-LHC (3 ab⁻¹)
 - 170 M Higgs produced in each experiment
 - ~ 1/2 million events after selection
 - HL-LHC will be the first Higgs factory

Physics at Future Colliders 28-29 July 2016

Precision Higgs physics (3)

Higgs couplings projections (cont'd)

Coupling	LHC Run1	LHC (300 fb ⁻¹)	LHC (1 ab-1)	HL-LHC
κ _w	15%	4-6%	3-5%	2-5%
κ _z	20%	4-6%	3-5%	2-4%
κ _t	50%	14-15%	10-12%	7-10%
κ _b	40%	10-13%	6-10%	4-7%
κ _τ	25%	6-8%	4-6%	2-5%

HL-LHC will bring a factor 1.5 to 2 on top of 300 fb⁻¹ (and 20-50% on top of 1 ab⁻¹)

- Limited by systematic uncertainties
- Becomes sensitive to, e.g., $H \rightarrow \mu \mu$
 - Expect 35K signal events with 3 ab⁻¹
 - → S/B ~ 0.3% → 10 σ significance
 - Coupling measured to ~10%
 - ➡ 20-30% with 300 fb⁻¹

Precision Higgs physics (4)

- Is the precision good enough to make a "discovery" ?
 - Example of expected deviations if new physics scale is at 1 TeV
 - when new particles are ~1TeV:

	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
2HDM	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$

Typically, expect deviations: $\Delta \kappa / \kappa < \sim 5 \% / \Lambda^2$ (with Λ in TeV)

- Need 1% precision on couplings for a 5 σ discovery if Λ = 1 TeV
 - And much better for heavier new physics
- HL-LHC might be good enough for some new physics models
 - IF the new physics scale is well below 1 TeV
 - ➡ The air is getting thin ...

Precision Higgs physics (5)

- **Higgs self coupling** s(pp→HH) [bb] -LO 10 Measurable through double Higgs production -+ NLO ---- NNLO $g_{HHH} = 3 m_{H}^2/v$ Η 9 00000 10⁻¹ g $\overline{}$ Q10⁻² -5 5 0 10 -10 - H 9 0000 H 9 00000 λ_{HHH} / λ_{HHH}^{SM} • Negative interference reduces the sensitivity to g_{HHH} LHCC-P-008 (CMS TP) √s=14 TeV, PU=140 ATL-PHYS-PUB-2014-019 Events Two channels studied so far Events/2.5 Ge/ ATLAS Simulation Preliminary **CMS Simulation** Toy data 25 \s=14 TeV, 3000 fb 50 Combined fit H(bb)H(γγ) 💻 tīH(γγ) HH->bbyy bbττ and bbyy 20 tīX bbγγ Number of Resonant bkg 💻 bbH(γγ) 40 💻 Ζ(bb)Ĥ(γγ) Non-resonant bkg Only 9000 + 300 events Others 15 30 **Expected significance < 2**σ ٠ 20 • Precision on g_{HHH} > 50% 10 50 100 100 105 110 115 120 125 130 150 200 250 135 140 145 150 $M_{\gamma\gamma}$ [GeV/c²] m_{vv} [GeV]
 - Is this precision enough?
 - Not really: new physics models do not predict deviations larger than 20%

Precision Higgs physics (6)

Invisible Higgs decays

Improves DM search at low mass

	BR _{inv} (95% CL)
LHC Run1	40-50%
LHC 300 fb ⁻¹	20-30%
HL-LHC	10-15%

Top quark mass (1)

Patrick Janot

Top quark mass (2)

- The top quark mass at HL-LHC
 - There is still much more to come: systematic uncertainties are statistics limited
 - And there are more methods out there to try

Projected uncertainties

- Reduction by a factor 2
 - After the first data of LHC Run2
 - One year
 - Then after the LHC Run3
 - ➡ Five more years
 - Then after 3 ab⁻¹
 - Ten more years

Ultimate reach: ~ 200 MeV (exp.)

- Theory uncertainties ~ 500 MeV
 - What is the quantity that is measured ? MC top mass ?
- Must answer this very question
 - Otherwise 3 ab⁻¹ won't do much better than 0.3 or 1 ab⁻¹

Supersymmetry (1)

- Search for third generation squarks (stop)
 - Original motivation: make a small Higgs boson mass "natural"

- To serve its purpose, the lighter stop should not be much heavier than 1 TeV
 - Search for light stop production, e.g.,

Final state similar to top pair production, with larger missing energy

Supersymmetry (2)

Search for third generation squark (cont'd)

• Today :

Projections with 300 and 3000 fb⁻¹

- Mass reach extended by a factor 2 with LHC at 14 TeV (300 fb⁻¹): covers the 1 TeV region
 - Further 20% extension with HL-LHC
- If no excess is seen with 300 fb⁻¹
 - The HL-LHC discovery potential vanishes entirely

Supersymmetry (3)

- **D** Search for other squarks and gluinos
 - Can be heavier than the lighter stop already excluded up to 1 TeV in Run 1

- Mass reach extended by a factor 2 to 3 with LHC at 14 TeV (300 fb⁻¹)
 - Further extended by 20% with HL-LHC
- Discovery potential of HL-LHC vanishes if no excess is seen with 300 fb⁻¹

New gauge bosons: W', Z'

- □ Look for heavy di-lepton resonance: Z' → e⁺e⁻, $\mu^+\mu^-$, or W' → e⁺ ν_e , $\mu^+\nu_\mu$
 - Z' and W' masses up to 2-3 TeV excluded at LHC Run 1

- Mass reach extended by a factor 2 with LHC at 14 TeV (300 fb⁻¹)
 - Further extended by 20% with HL-LHC
- Discovery potential of HL-LHC vanishes if no excess is seen with 300 fb⁻¹
 - (Not visible in the graphs above)

... and many others ...

• All with a similar pattern

Conclusions of the first lecture (1)

- **The LHC Run 1 brought the last experimental proof of the Standard Theory**
 - The Standard Theory of Particle Physics was already complete 40 years ago !
 - New physics with a scale below 1 TeV has become quite unlikely
 - Standard theory tested at quantum level: new physics will be hard to find
- □ With the 8 → 14 TeV increase, the LHC Run 2 and Run 3 promise to be thrilling
 - The mass reach for new physics will increase by a factor 2
 - Stop: 1.2 TeV; Squarks/Gluinos: 2.5 / 3 TeV; Z': 6 TeV; etc.
 - The measurement precision will improve by a factor ~4-5
 - Top mass: 300-400 MeV; Higgs couplings: 2-10%; etc.
 - The lighter particle of the new physics spectrum may even be discovered
 - Beware statistical fluctuations !
 - Among 1000 different searches in ATLAS and CMS, at least one is bound to give a >3σ effect every year (e.g., X₇₅₀ → γγ ?). Keep calm and take more data.
- The HL-LHC will allow the first studies of any discovered new particle
 - But it is unlikely to allow the exploration of the heavier part of the spectrum
 - Only 20% mass reach increase from the tenfold increase of the luminosity

Conclusions of the first lecture (2)

- If no hint of a new particle is found in the LHC Run2 or 3 (even via a modest excess)
 - The HL-LHC is unlikely to make any discovery in 15 years of running
- **The HL-LHC will allow precision measurements to improve**
 - By a factor up to 2 (1.5) with respect to LHC 300 fb⁻¹ (1000 fb⁻¹)
 - The ultimate precision is unlikely to unveil new physics effects
 - Because deviations from BSM physics are not expected to be large enough
- Whether a new particle is discovered at the LHC Run2 or not
 - Very significantly more energy will be eventually needed
 - Either to explore the heavier part of the spectrum
 - Or to extend the search for new physics towards significantly higher masses
 - Very significantly more precision will be eventually needed
 - To extend the search for new physics towards significantly smaller couplings
 - To see indirect effects of heavy new physics in precision measurements
 - And understand the underlying physics quantum structure

See 2nd & 3rd lectures for the pertaining perspectives

Conclusions of the first lecture (3)

- You are going to be running the LHC until 2035
 - With significant upgrades to the machine and the detectors for the HL-LHC
 - In extreme running conditions (with an average of 140-200 PU collisions)
- Let will be necessary to re-assess the strategy in depth in 2018/19
 - In view of the results of the LHC Run2
 - Will 300 fb⁻¹ be enough ? Or 1000 fb⁻¹?
 - Will the physics prospects compelling enough to justify the need of 3 ab⁻¹?
 - ➡ with a luminosity increment of 10% / year, until 2030-2035
- "The HL-LHC project is not controversial"

Fabiola Gianotti, 23 June 2016 DG presentation to CERN personnel

TODAY, WHAT DO YOU THINK?