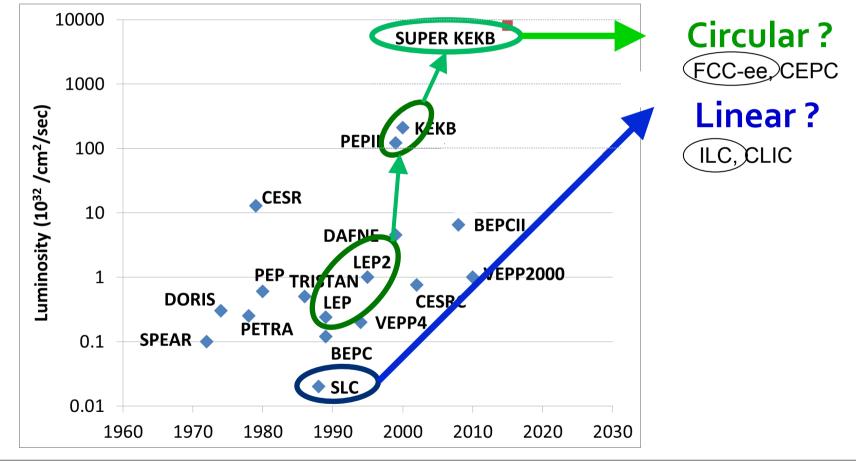
Physics at Future Colliders

- Lecture 1 (Thursday 28 July, 10:20)
 - An historical perspective (1964-2014): The need for precision and energy
 - A strategy for the future: Towards the precision and energy frontier
 - The short-term perspectives (2020-2035): The HL-LHC
- Lecture 2 (Friday 29 July, 9:15)
 - The quest for precision (2030-2050): Linear or Circular ?
- Lecture 3 (Friday 29 July, 10:20)
 - The energy frontier (2045-2080): Leptons or Hadrons ?
 - Thinking out of the box: Muon collider
 - Towards the next European Strategy update (2019-2020)

Lecture 2

Mid-term perspectives (2030-2050) The quest for precision: Linear or Circular ?

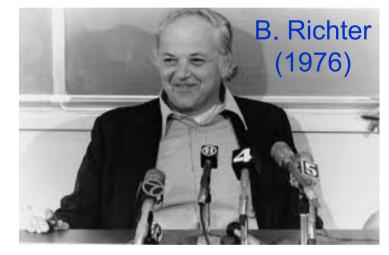
FCC (100 km) First step: FCC-ee (88-370GeV) [Use the tunnel ultimately aimed at FCC-hh]

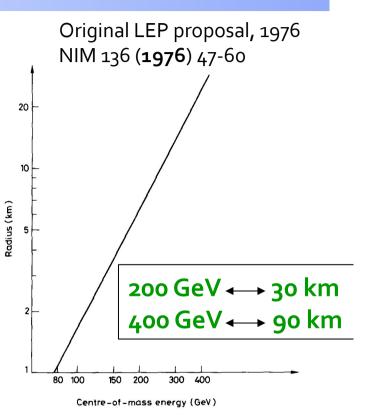


Patrick Janot

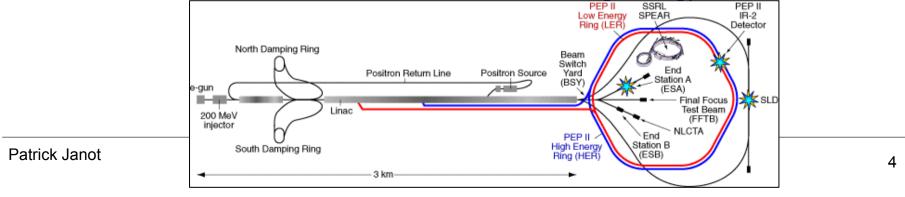
Precision with e⁺e⁻ colliders (1)

- Historically, e⁺e⁻ colliders have been used for precision measurements
 - The accuracy of e⁺e⁻ colliders led to predictions at higher scales (m_{top}, m_H, limits on NP)

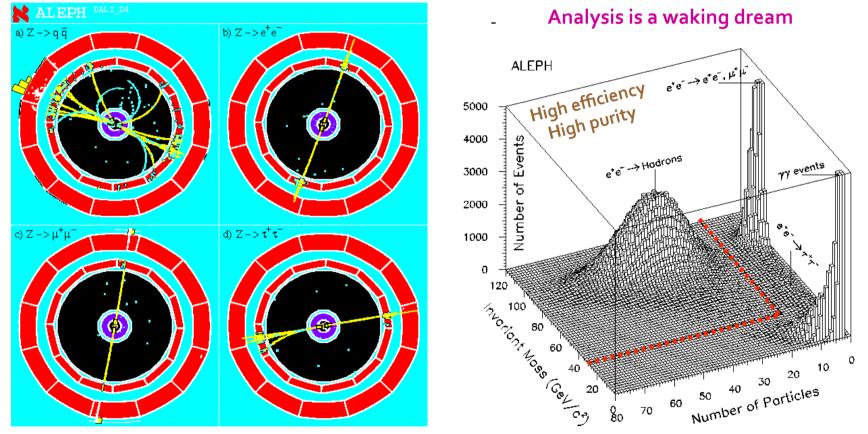

• And to [unexpected] discoveries (e.g., c, g, τ , v_{τ} ...)



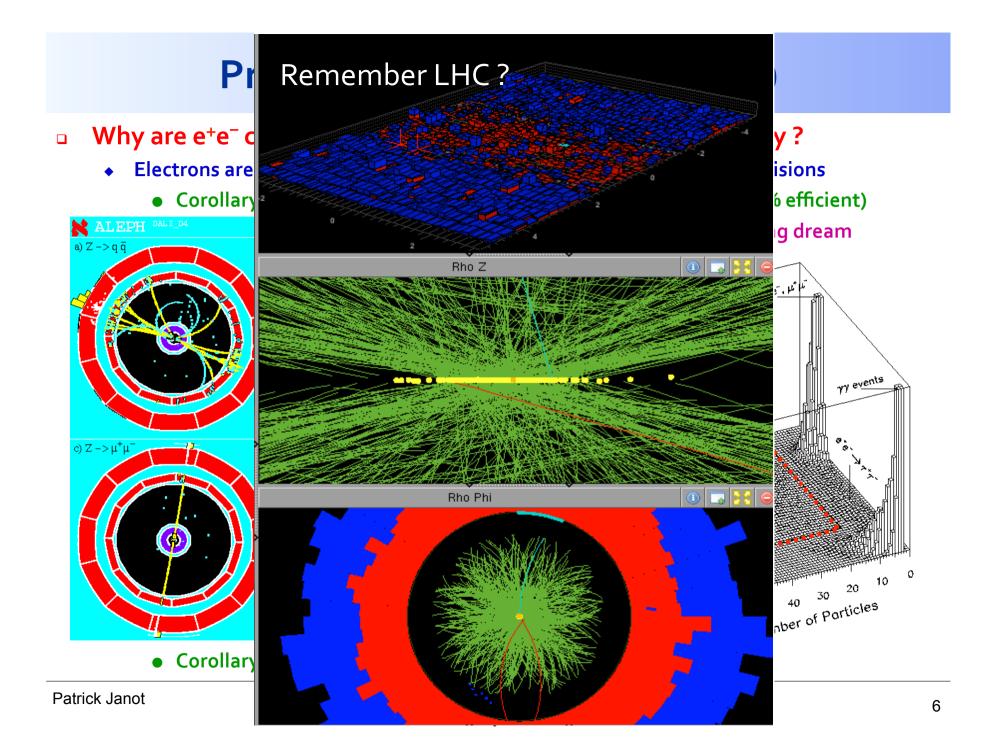
Precision with e⁺e⁻ colliders (2)


• The dilemma is not really new

 "An e⁺e⁻ storage ring in the range of a few hundred GeV in the centre-of-mass can be built with present technologies [...] would seem to be [...] the most useful project on the horizon"

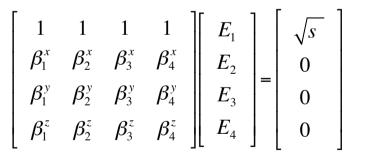


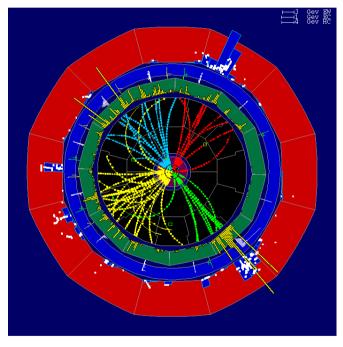
• B. Richter, "The SLAC Linear Collider", 11th Conf. on High-Energy Accelerators (1980)



Precision with e⁺e⁻ colliders (3)

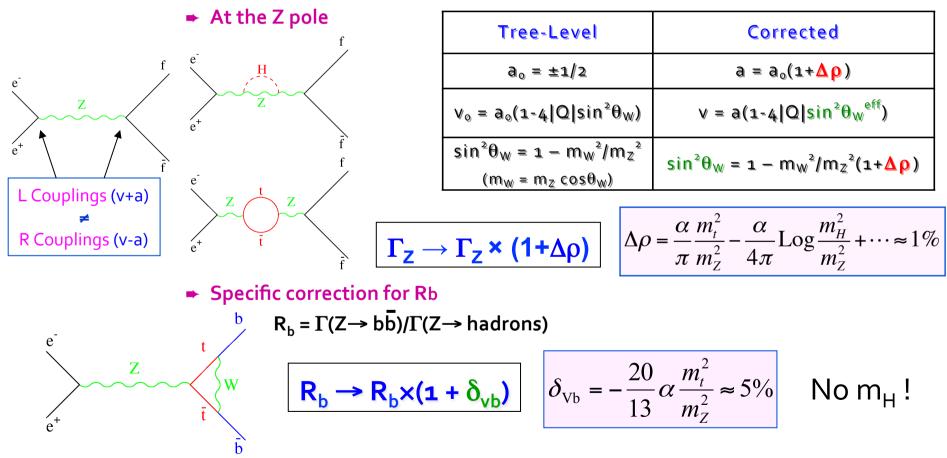
- Why are e⁺e⁻ colliders the tool of choice for precision anyway ?
 - Electrons are not protons, i.e., do not interact strongly: no pile-up collisions
 - Corollary #1: Final state is clean and cosy, triggering is easy (100% efficient)




• Corollary #2: No huge QCD cross section: All events are signal.

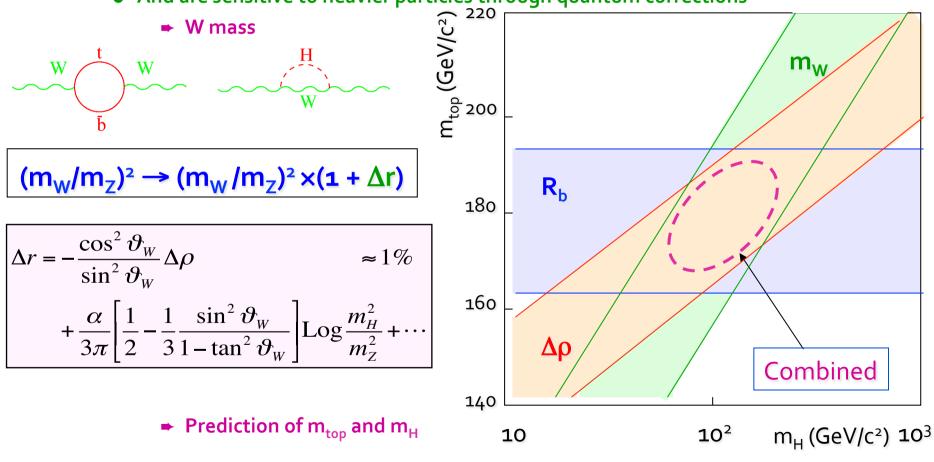
Precision with e⁺e⁻ colliders (4)

- Why are e⁺e⁻ colliders the tool of choice for precision anyway ? (cont'd)
 - Electrons are leptons, i.e., elementary particles: no underlying event
 - Corollary: Final state has known energy and momentum: (\sqrt{s} , o, o, o)
 - Example: an $e^+e^- \rightarrow W^+W^- \rightarrow qqqq$ candidate
 - Four jets in the event and nothing else
 - Total energy and momentum are conserved
 - $\Rightarrow \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3 + \mathbf{E}_4 = \sqrt{\mathbf{s}}$
 - $P_1^{x,y,z} + p_2^{x,y,z} + p_3^{x,y,z} + p_4^{x,y,z} = 0$
 - Jet directions ($\beta_i = p_i/E_i$) are very well measured



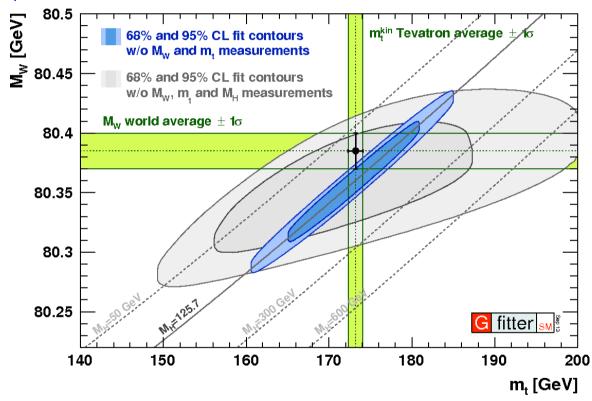
- Jet energies (or di-jet masses: m_w) determined analytically by inverting the matrix
 - No systematic uncertainty related to jet energy calibration

A lot of Z are available anyway to calibrate and align everything


Precision with e⁺e⁻ colliders (5)

- Why are e⁺e⁻ colliders the tool of choice for precision anyway ? (cont'd)
 - Electroweak observables can be calculated/predicted with precision
 - And are sensitive to heavier particles through quantum corrections

Precision with e⁺e⁻ colliders (7)

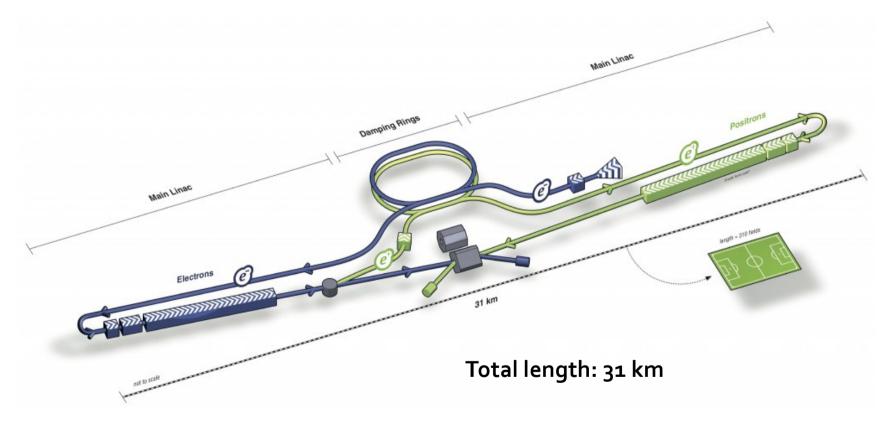

- Why are e⁺e⁻ colliders the tool of choice for precision anyway ? (cont'd)
 - Electroweak observables can be calculated/predicted with precision
 - And are sensitive to heavier particles through quantum corrections

Precision with e⁺e⁻ colliders (8)

Current status of precision measurements

• With m_{top}, m_w and m_H known, the standard model has nowhere to go

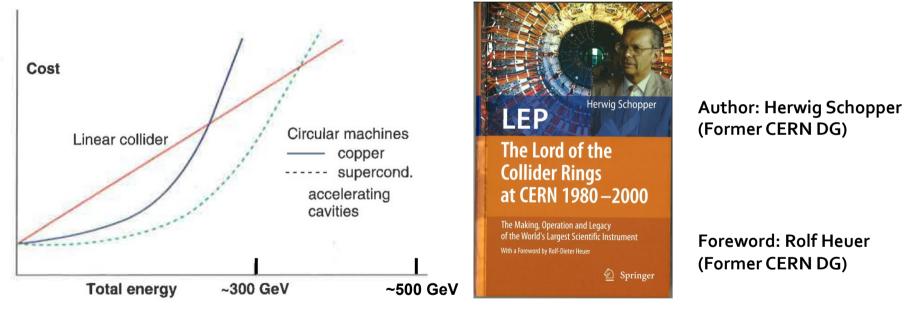
- Strong incentive to significantly improve the precision of all measurements
 - Towards being sensitive to 100 TeV new physics through quantum corrections
 - And to understand the quantum structure of the underlying physics


Precision with e⁺e⁻ colliders (9)

• The European Strategy update in 2013 does not say otherwise

e) There is a strong scientific case for an electron-positron collider, complementary to the LHC, that can study the properties of the Higgs boson and other particles with unprecedented precision and whose energy can be upgraded.

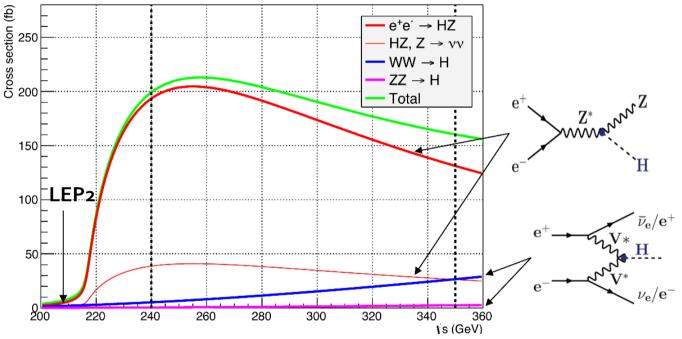
Linear or Circular ? (1)


- **•** For 20 years, there was only one such project on the market
 - A 500 GeV e⁺e[−] linear collider, now called "ILC", proposed in the early 1990's

• Why not a 500 GeV circular collider ?

Linear or Circular ? (2)

- Why not a 500 GeV circular collider ?
 - Synchrotron radiation in circular machines
- Energy lost per turn grows like $\Delta E \propto \frac{1}{R} \left(\frac{E}{m}\right)^4$, e.g., 3.5 GeV/turn at LEP2
 - ➡ Must compensate with R and accelerating cavities → Cost grows like E⁴ too.



- A e⁺e⁻ collider with \sqrt{s} > 500 GeV can only be linear. The circular cost is prohibitive.
 - "Up to a centre-of-mass energy of 350 GeV at least, a circular collider with superconducting accelerating cavities is the cheapest option"

H. Schopper, private communication, 2014

Linear or Circular ? (3)

- **Interest for circular collider projects grew up again after first LHC results**
 - The Higgs boson is light LEP2 almost made it: only moderate \sqrt{s} increase needed

- Need to go up to the top-pair threshold (350+ GeV) anyway to study the top quark
- There seems to be no heavy new physics below 500 GeV
 - The interest of $\sqrt{s} = 500$ GeV (and even 1 TeV) is now very much debated
- Way out: study with unprecedented precision the Z, W, H and top quark
 - Highest luminosities at 91, 160, 240 and 350 GeV are needed

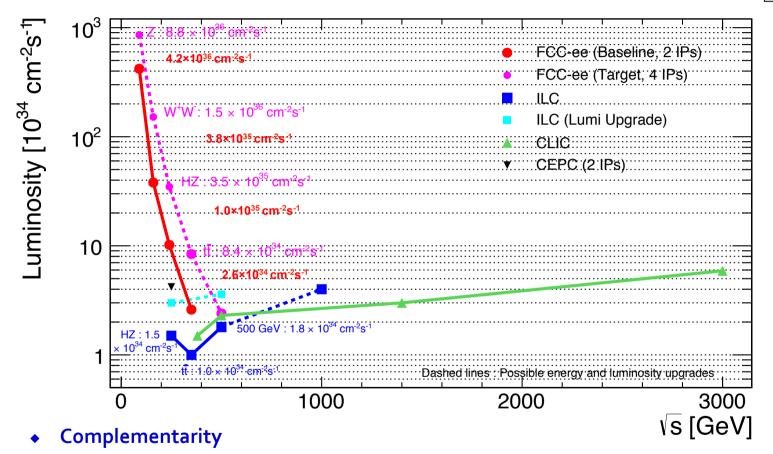
Linear or Circular ? (4)

- The ILC is designed for $\sqrt{s} = 500$ GeV (works OK at $\sqrt{s} \sim 250$ GeV)
 - It is supported by 20 years of R&D and innovation
 - With a complete technical design report delivered in 2013
 - ➡ In principle, ready for construction as soon as decision is taken
 - This machine has many technological challenges
 - A 24 km-long, high-gradient (31 MV/m), RF system
 - A very low β^* optics delivering small beam spot sizes at high intensity
 - Not yet demonstrated to be achievable
 - A positron source with no precedent
 - → Its performance cannot be verified before the construction is complete
 - A green-field project
 - It can deliver data to only one detector at a time
 - It is in principle upgradeable up to $\sqrt{s} = 1 \text{ TeV}$
 - And possibly more : CLIC or Plasma acceleration in the same tunnel (?)
 - But there is no design to run at the Z pole

D. Schulte

Linear or Circular ? (5)

- The FCC-ee is designed to be a Z, W, H, and top factory ($\sqrt{s} = 88-370$ GeV)
 - It is a project in its infancy: less than three years old
 - Lots of progress were made in the past two years


D. Schulte

- ➡ Technology is ready on paper
- This machine has at least as many technological challenges
 - A high-power (200 MW), high-gradient (10 MV/m), 2 km-long, RF system
 - Loads of synchrotron radiation (100 MW) to deal with
 - A booster (for top up injection), and probably a double ring for e⁺ and e⁻
 - An optics with very low β^* , and large momentum acceptance
 - Transverse polarization for beam energy measurement
 - Up to four experiments to serve
 - ... and much more
- It is supported by 50 years of experience and progress with e⁺e⁻ circular machines
 - Most of the above challenges are being addressed at SuperKEKB (starting 2015)
 - ➡ FCC-ee will have to build on this experience
- It is a synergetic spring board towards a 100 TeV proton-proton collider

Linear or Circular ? (6)

■ Performance target for e⁺e⁻ colliders

D. Schulte

- Ultimate precision measurements with circular colliders (FCC-ee)
- Ultimate e⁺e⁻ energies with linear colliders (CLIC)

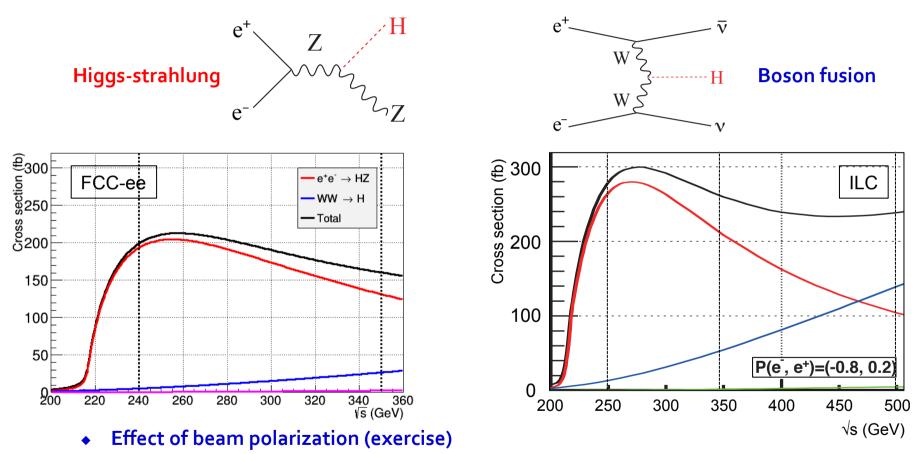
Linear or Circular ? (7)

■ Performance target for e⁺e⁻ colliders

• Number of events per year for the FCC-ee

√s (GeV)	90 (Z)	160 (WW)	240 (HZ)	350+ (tt)	350+ (WW→H)	
Lumi (ab-¹/yr)	40 – 80	4 - 15	1.0 - 3.5	0.25 - 1.0	0.25 - 1.0	
Events/year	Events/year 2–4×10 ¹²		2–7×10 ⁵	1.3–4.2×10 ⁵	0.6–2.5×10 ⁴	
 Numbe 	10 to 15 years 1 year = 10 ⁷ s					

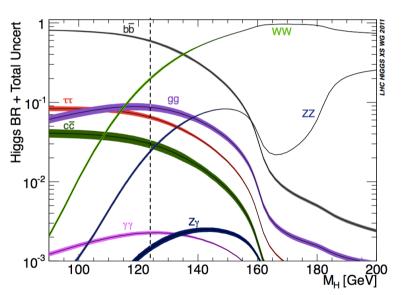
years 2-3 1-2 3-5 0.5 3-5

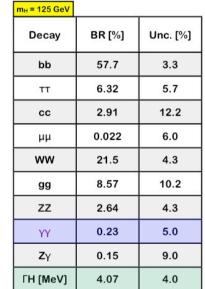

 The ILC wit 	~ 13 years 1 y = 1.6×10 ⁷ s				
# years	3?(*)	3?(*) 3?(*) 3 1			
Total lumi (ab-1)	0.1	0.5	0.5	0.2	0.5
Events@ILC	3×10 ^{9 (*)}	2×10 ^{6 (*)}	1.4×10 ⁵	10 ⁵	3.5×104
ILC @ FCC-ee	1 day	1 week	2 months	3 months	1.5 year

(*) No design available at the Z pole and the WW threshold: very difficult to achieve with a linear collider.

• About one year is needed for the FCC-ee to complete the full ILC precision physics programme

Precision Higgs physics at FCC-ee and ILC (1)

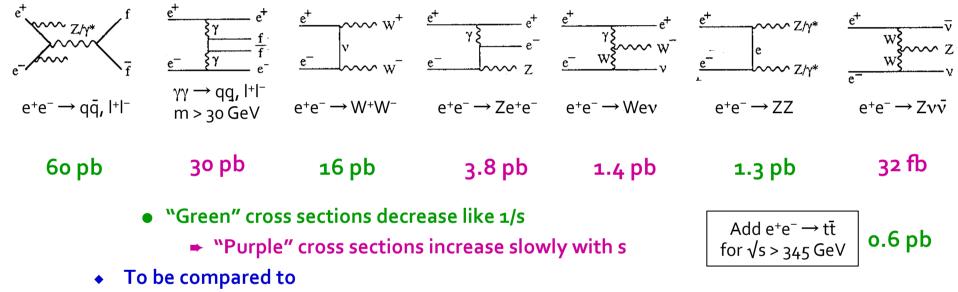

□ Dominant production processes for $\sqrt{s} \le 500 \text{ GeV}$

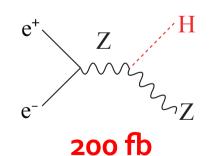


- Higgs-strahlung cross section multiplied by 1 P_P₊ A_e × (P_ P₊)
- Boson fusion cross section multiplied by $(1-P_-) \times (1+P_+)$

Precision Higgs physics at FCC-ee and ILC (2)

- The plan is to run at $\sqrt{s} = 240-250$ GeV and 350-500 GeV in order to
 - Determine all Higgs couplings (κ_i) in a model-independent way
 - Infer the Higgs total decay width
 - Evaluate (or set limits on) the Higgs invisible or exotic decays
 - Through the measurements of $\sigma(e^+e^- \rightarrow H + X) \times BR(H \rightarrow YY)$

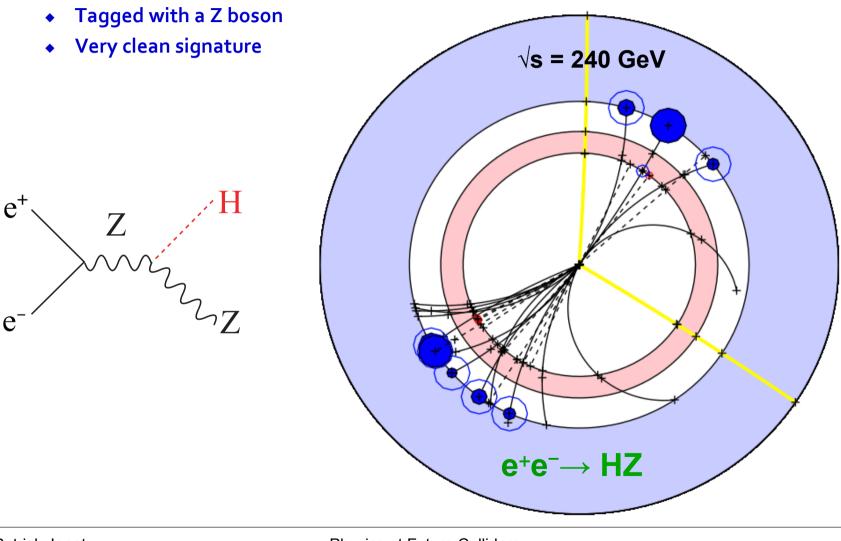



with Y = b, c, g, W, Z, γ , τ , μ (invisible)

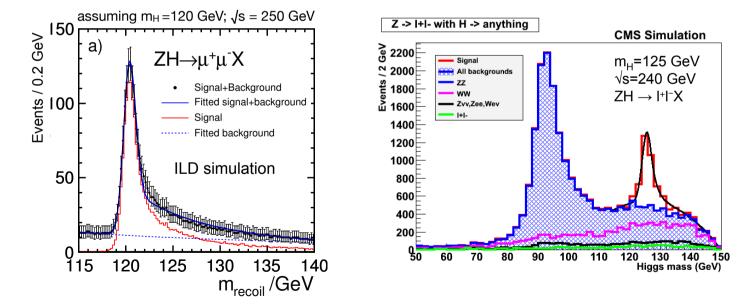
- m_H = 125 GeV is a very good place to be for precision measurements !
 - All decay channels open and measurable can test new physics from many angles

Precision Higgs physics at FCC-ee and ILC (3)

- Physics backgrounds are "small"
 - For example, at $\sqrt{s} = 240 \text{ GeV}$

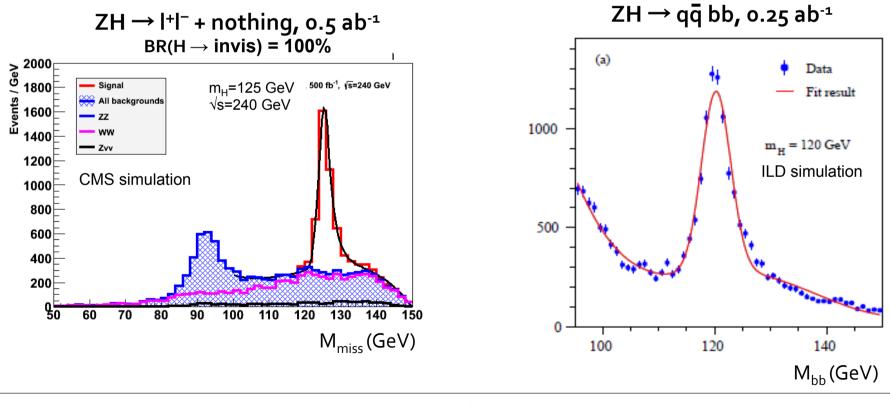


- Only one to two orders of magnitude smaller
 - vs. 11 orders of magnitude in pp collisions
 - Trigger is 100% efficient (no need for trigger with ILC all crossings are recorded)
 - All Higgs events are useful and exploitable
 - Signal purity is large

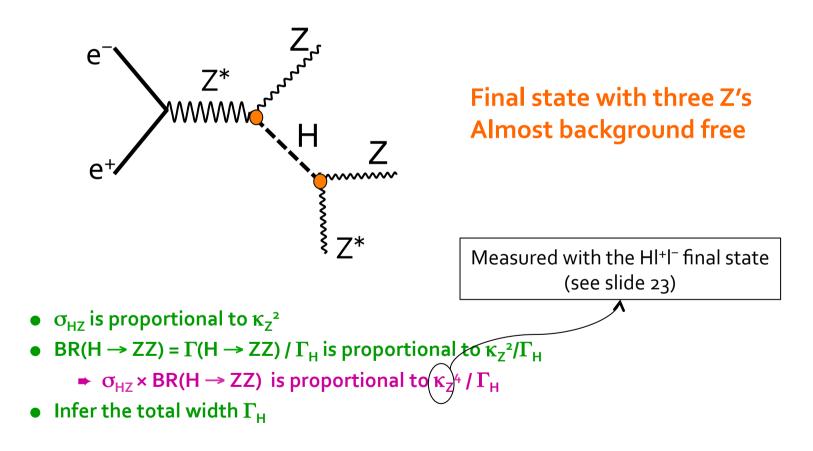

Precision Higgs physics at FCC-ee and ILC (4)

Example of a Higgs boson event

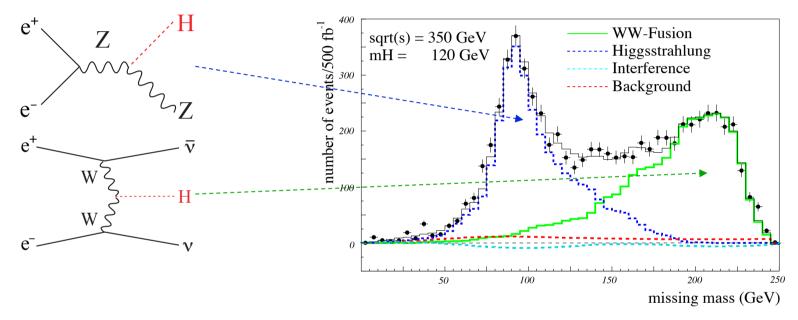
Precision Higgs physics at FCC-ee and ILC (5)


- \square Example: Model-independent measurement of σ_{HZ} and κ_{Z}
 - The Higgs boson in HZ events is tagged by the presence of the Z \rightarrow e⁺e⁻, $\mu^+\mu^-$
 - Select events with a lepton pair (e⁺e⁻, $\mu^+\mu^-$) with mass compatible with m_z
 - No requirement on the Higgs decays: measure $\sigma_{HZ} \times BR(Z \rightarrow e^+e^-, \mu^+\mu^-)$
 - Apply total energy-momentum conservation to determine the "recoil mass"
 - $m_{H^2}^2 = s + m_{Z^2}^2 2\sqrt{s(p_+ + p_-)}$ Exercise !
 - Plot the recoil mass distribution resolution proportional to momentum resolution

+ Provides an absolute measurement of κ_z and set required detector performance


Precision Higgs physics at FCC-ee and ILC (6)

- **Repeat the search in all possible final states**
 - For all exclusive decays of the Higgs boson: measure $\sigma_{\rm HZ} \times BR({\rm H} \rightarrow {\rm YY})$
 - Including invisible decays, just tagged by the presence of the lepton pair & m_{miss}
 - For all decays of the Z (hadrons, taus, neutrinos) to increase statistics
 - For the WW fusion mode (Hv \overline{v} final state): measure $\sigma_{WW \rightarrow H} \times BR(H \rightarrow YY)$


Precision Higgs physics at FCC-ee and ILC (7)

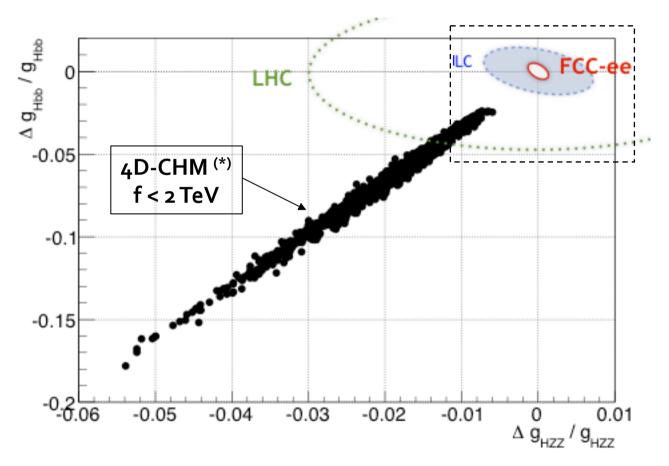
- Indirect determination of the total Higgs decay width
 - From a counting of HZ events with $H \rightarrow ZZ$ at $\sqrt{s} = 240 \text{ GeV}$
 - Measure $\sigma_{HZ} \times BR(H \rightarrow ZZ)$

Precision Higgs physics at FCC-ee and ILC (8)

- Indirect determination of the total Higgs decay width (cont'd)
 - From a counting WW \rightarrow H \rightarrow bb events at 350-500 GeV in the bbvv final state:

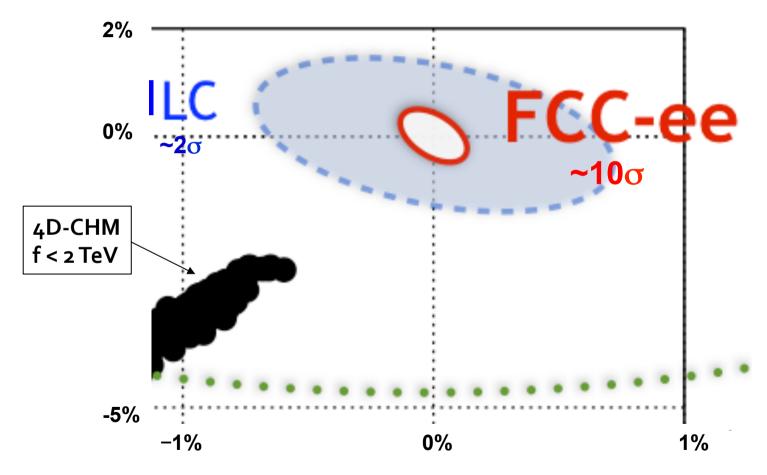
- Measure $\sigma(WW \rightarrow H \rightarrow bb)$
- Take the branching ratios into WW and bb from $\sigma_{\rm HZ}$ and $\sigma_{\rm HZ}$ × BR(H → WW,bb)
- Infer the total width

$$\Gamma_{H} \propto \sigma_{WW \to H} / \operatorname{BR}(H \to WW) = \sigma_{WW \to H \to bb} / \operatorname{BR}(H \to WW) \times \operatorname{BR}(H \to bb)$$


Precision Higgs physics at FCC-ee and ILC (9)

Comparison with LHC

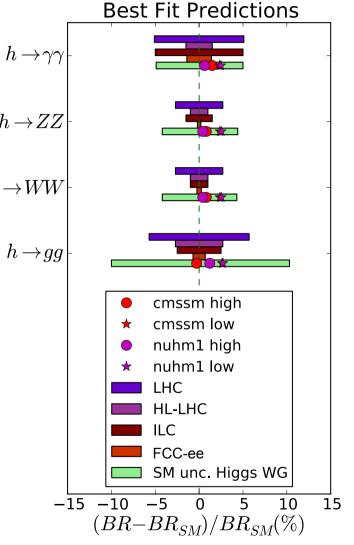
Coupling	HL-LHC	ILC (+)	FCC-ee	Model-independe	nt results		
κ _w	2-5%	0.8%	0.19%				
κ _z	2-4%	0.6%	0.15%				
κ _b	4-7%	1.5%	0.42%	Sensitive to new physic			
κ _c	-	2.7%	0.71%	Expected effects < 1% precision needed for			
κ _τ	2-5%	1.9%	0.54%	Sub-percent needed fo	1.41		
κ _μ	~10%	20%	6.2%				
κ _γ	2-5%	7.8%	1.5%				
κ _g	3-5%	2.3%	0.8%	Sensitive to new physics in loops			
κ _{zγ}	~12%	?	?				
BR _{invis}	~10-15%?	< 0.5%	< 0.1%	Sensitive to light dark ma	. y)		
Γ _H	~50%?	3.8%	0.9%	and to other exotic decays Need higher energy to improve on LHC			
κ _t	7-10%	18%	13% (*)				
κ _н	30-50%?	77%	80%(*)				
			(*) indirect				
Patrick Janot			s at Future Colli 8-29 July 2016	(+) Factor 2 smaller errors if lu and an additional 10-15 years		27	


Precision Higgs physics at FCC-ee and ILC (10)

- **u** Higgs couplings are affected by new physics
 - Example: Effect on κ_z and κ_b for 4D-Higgs Composite Models

Precision Higgs physics at FCC-ee and ILC (10)

- **u** Higgs couplings are affected by new physics
 - + Example: Effect on κ_{Z} and κ_{b} for 4D-Higgs Composite Models


Precision Higgs physics at FCC-ee and ILC (12)

Sensitivity to new physics (example)

- Compare the difference between the predictions of a few simple SUSY models and the SM for a few **Higgs branching fractions**
 - $h \rightarrow ZZ$ • With LHC, HL-LHC, ILC and FCC-ee expected precision

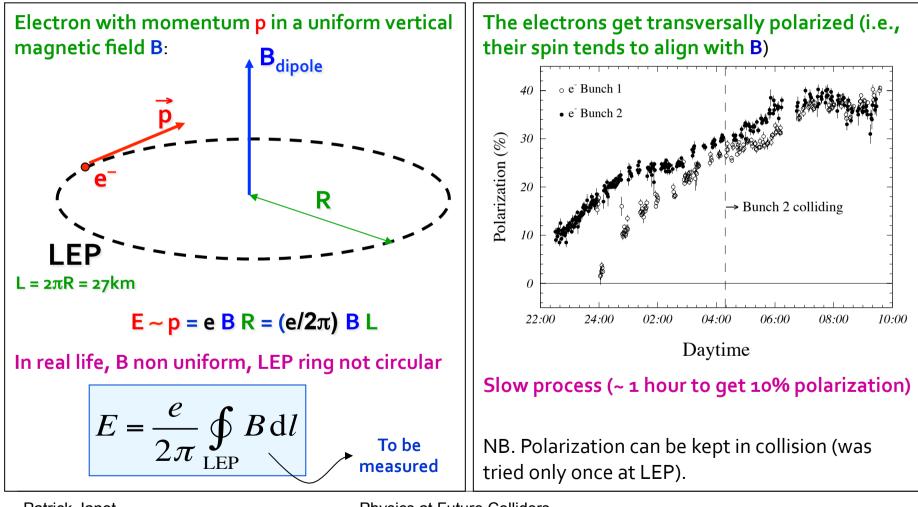
 $h \rightarrow WW$

- With the current SM prediction uncertainties
- **Basic messages** ٠
 - The statistics proposed by the FCC-ee are needed to distinguish these SUSY models from the Standard Model
 - The SM theoretical uncertainties (dominated by QCD) must be reduced to match the experimental potential
 - Feasible by FCC-ee / ILC timescales ?

Precision electroweak physics at FCC-ee (1)

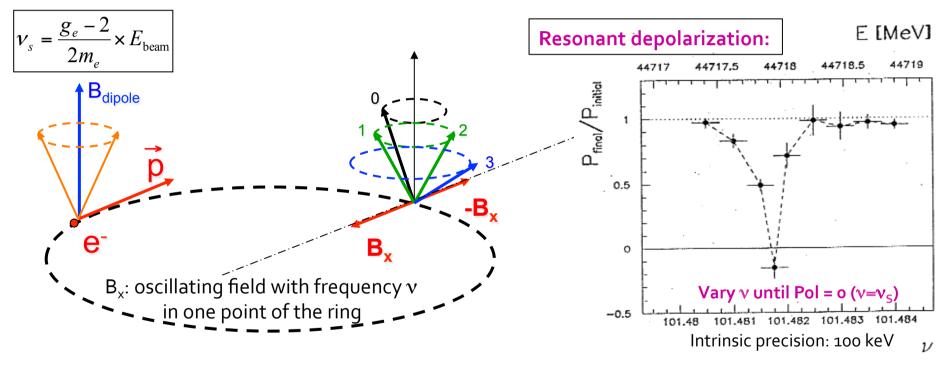
Reminder: The FCC-ee goals in numbers (after commissioning)

√s (GeV)	Running time	FCC-ee Statistics	ILC	LEP
91	2-3 year	~10 ¹³ Z decays (Tera Z)	10 ^{9 (*)}	2X10 ⁷
161	1-2 year	~10 ⁸ WW pairs (Oku W)	10^{6 (*)}	4X10 ⁴
350	3-5 years	~10 ⁶ top pairs (Mega Top)	10 ⁵	_


(*) Estimate: not in the core programme

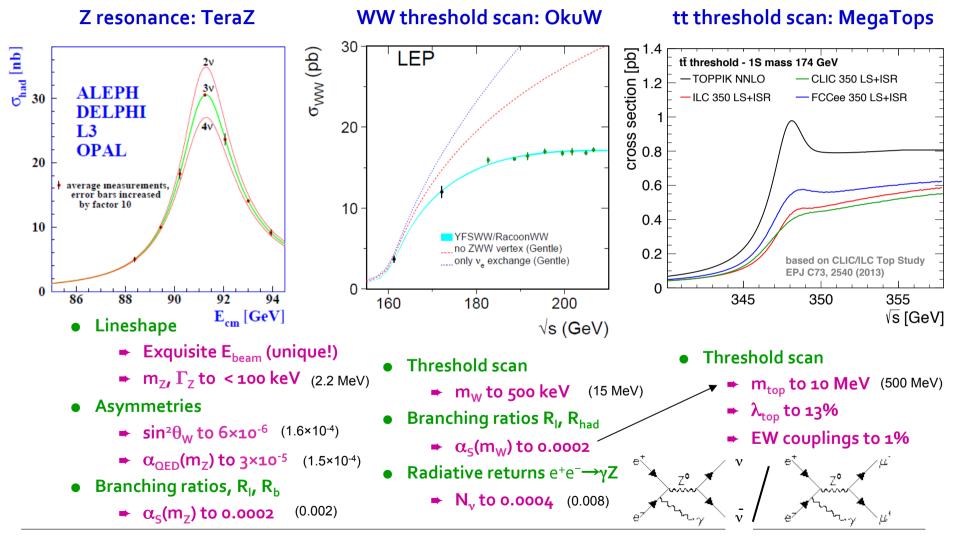
- FCC-ee is the ultimate Z, W, Higgs and top factory
 - 10 to 10,000 times the ILC targeted statistics at the same energies
 - 10⁵ more Z's and 10⁴ more W's than LEP1 and LEP2
 - Potential statistical accuracies are mind-boggling !
- Predicting accuracies with 300 times smaller statistical precision than at LEP is difficult
 - Conservatively used LEP experience for systematics. This is just the start.
- Example: The uncertainty on E_{BEAM} (2 MeV) was the dominant uncertainty on m_{Z} , Γ_{Z}
 - Can we do significantly better at FCC-ee ?

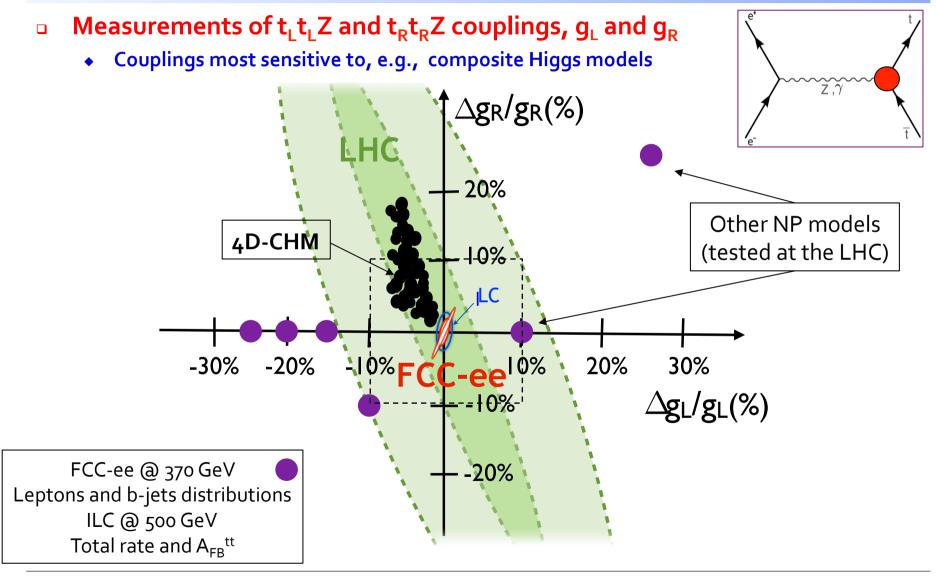
Precision electroweak physics at FCC-ee (2)


Measurement of the beam energy at LEP

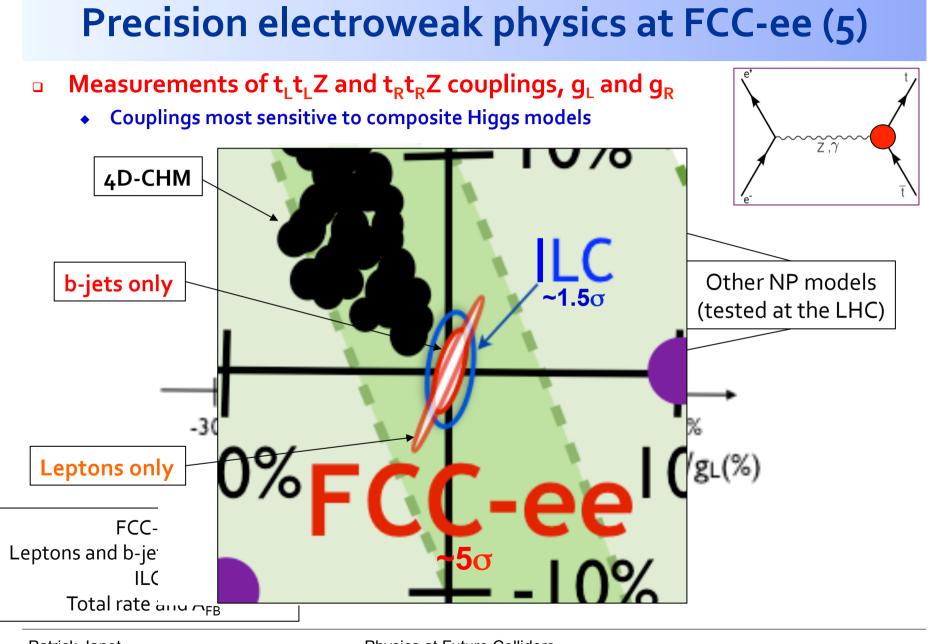
• Ultra-precise measurement unique to circular colliders (crucial for m_{z} , Γ_{z})

Precision electroweak physics at FCC-ee (3)

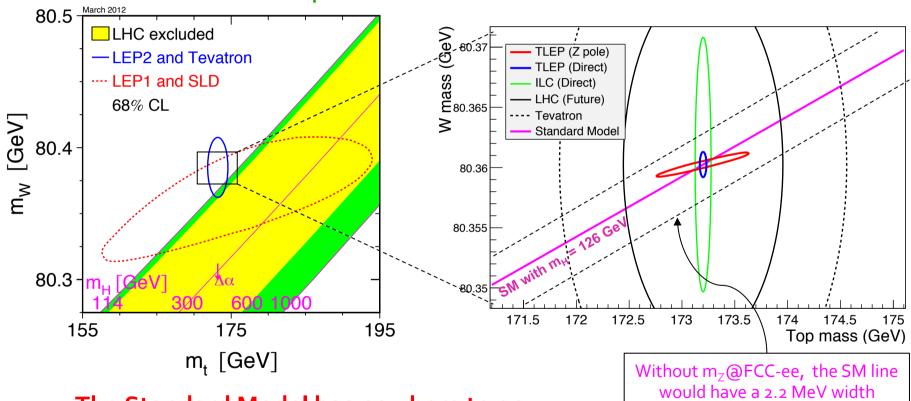

- Measurement of the beam energy at LEP (cont'd)
 - The spin precesses around B with a frequency proportional to B (Larmor precession)
 - Hence, the number of revolutions v_s for each LEP turn is proportional to BL (or \int Bdl)


- ◆ LEP was colliding 4 bunches of e⁺ and e⁻; FCC-ee will have 10,000's of bunches.
 - Use ~100 "single" bunches to measure E_{BEAM} with resonant depolarization
 - ► Each measurement gives 100 keV precision, with no extrapolation uncertainty

Precision electroweak physics at FCC-ee (4)


EW Precision measurements at FCC (see arXiv:1308.6176)

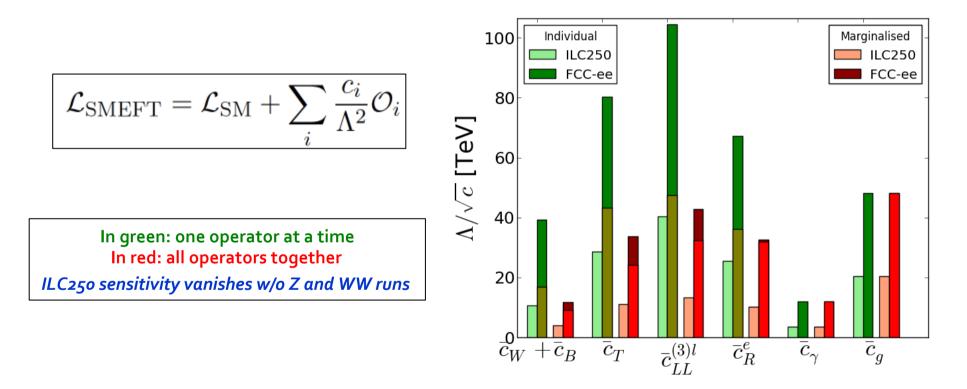
Precision electroweak physics at FCC-ee (5)



Patrick Janot

Precision electroweak physics at FCC-ee (6)

- **D** Combination of all precision electroweak measurements
 - FCC-ee precision allows m_{top} , m_{W} , m_{H} , $sin^2\theta_W$ to be predicted in the SM
 - ... and to be compared to the direct measurements



The Standard Model has nowhere to go

Constraints on new physics ?

Precision electroweak physics at FCC-ee (7)

- **u** Higher-dimensional operators as relic of new physics ?
 - Possible corrections to the standard model

After FCC-ee: Λ_{NP} > 100 TeV ?

Precision electroweak physics at FCC-ee (8)

- The predictions of m_{top} , m_{W} , m_{H} , $sin^2\theta_W$ have theoretical uncertainties
 - Which may in turn cancel the sensitivity to new physics
- For m_w and $sin^2\theta_w$ today, these uncertainties are as follows

$$M_W = 80.3593 \pm 0.0056_{m_t} \pm 0.0026_{M_Z} \pm 0.0018_{\Delta\alpha_{had}}$$

= $0.0017_{\alpha_S} \pm 0.0002_{M_H} \pm 0.0040_{theo}$
= $80.359 \pm 0.011_{tot}$

$$\begin{aligned} \sin^2 \theta_{\text{eff}}^{\ell} &= 0.231496 \pm 0.000030_{m_t} \pm 0.000015_{M_Z} \pm 0.000035_{\Delta \alpha_{\text{had}}} \\ &\pm 0.000010_{\alpha_S} \pm 0.000002_{M_H} \pm 0.000047_{\text{theo}} \end{aligned}$$
$$= 0.23150 \pm 0.00010_{\text{tot}}$$

- Parametric uncertainties and missing higher orders in theoretical calculations:
 - Are of the same order
 - Smaller than experimental uncertainties

Precision electroweak physics at FCC-ee (8)

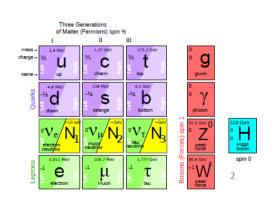
- Most of the parametric uncertainties will reduce at FCC-ee
 - New generation of theoretical calculations is necessary to gain a factor 10 in precision
 - To match the precision of the direct FCC-ee measurements

$$\begin{array}{rcl} M_W &=& 80.3593 \pm 0.0001 & \mbox{$_{m_t}$} \pm 0.0001 & \mbox{$_{M_Z}$} \pm 0.0003 & \mbox{$_{\Delta\alpha_{had}}$} \\ \mbox{Exp: 0.0005} & & \pm 0.0002 & \mbox{$_{\alpha_S}$} \pm 0.0000 & \mbox{$_{M_H}$} \pm 0.0040_{\text{theo}} \\ &=& 80.359 \pm 0.005 & \mbox{$_{tot}$} \end{array}$$

$$\sin^2 \theta_{\text{eff}}^{\ell} = 0.231496 \pm 0.000001 \quad m_t \pm 0.000001 \quad M_Z \pm 0.000008 \quad \Delta \alpha_{\text{had}}$$

$$\text{Exp: 0.000006} \qquad \pm 0.000001 \quad \alpha_S \pm 0.000000 \quad M_H \pm 0.000047_{\text{theo}}$$

$$= 0.23150 \pm 0.00006 \quad \text{tot}$$


- Will require calculations up to three or four loops to gain an order of magnitude
 - Might need a new paradigm in the actual computing methods
 - ➡ Lot of interesting work for future generations of theorists

Opportunities for discoveries at FCC-ee

- Searches for new physics through rare decays
 - 10^{13} Z, 10^{12} b, c and 10^{11} τ : A fantastic potential that remains to be explored.
 - E.g, search for right-handed neutrino in Z decays

$$Z \rightarrow Nv_i$$
, with $N \rightarrow W^*I$ or Z^*v_j

• Number of events depend on mixing between N and v, and on m_N

Precision with e⁺e⁻ colliders: Summary (1)

- The small mass of the Higgs boson allows two options to be contemplated
 - A 250 500 GeV linear collider: ILC (also CLIC at $\sqrt{s} = 380$ GeV)
 - A 88-370 GeV circular collider: FCC-ee (also CEPC at $\sqrt{s} = 240$ GeV)
- **Precision measurements at the EW scale are sensitive to new physics**
 - To potentially very high scales (up to ~100 TeV with FCC-ee)
 - To potentially very small couplings (sterile neutrinos, dark matter, ...)
 - Through a study of the Z, W, H, and top properties with unprecedented statistics
- Understanding this physics <u>requires</u> an e⁺e⁻ collider at the EW scale
 - In an ideal world, this understanding can even profit from having two of them
- Significant synergies (detectors) and real complementarities (physics)
 - Between circular (FCC-ee, CEPC) and linear collider projects (ILC, CLIC)
 - FCC-ee offers the highest luminosities and discovery potential (Z, WW, ZH)
 - ► These features will remain unchallenged if a linear collider is built
 - Linear colliders can reach energies beyond 500 GeV
 - ➡ This advantage will remain unique if the FCC is built

Precision with e⁺e⁻ colliders: Summary (2)

• In practical terms

- If a linear collider is built, the FCC-ee need not run at the top energy
 - Thus saving some RF cavities and running time
 - While remaining a real discovery machine
- If FCC is built, a linear collider can concentrate on the highest energies
 - Where it is most effective and useful
- In a real world: both are technologically/politically/financially challenging
 - Both can potentially be ready for collisions in the 2030's
 - Go through the slides again to form a personal opinion at this level of the scientific capabilities of each option
- **If a choice is to be made, high energy capabilities are essential to decide**
 - The likelihood of new physics below 1 TeV has reduced considerably with LHC Run1
 - An new evaluation will have to be made after LHC Run2 (soon!)

► High-energy frontier capabilities discussed in 3rd lecture

Precision with e⁺e⁻ colliders: Summary (3)

ARGUE & DEBATE !