Physics at Future Colliders

- Lecture 1 (Thursday 28 July, 10:20)
 - An historical perspective (1964-2014): The need for precision and energy
 - A strategy for the future: Towards the precision and energy frontier
 - The short-term perspectives (2020-2035): The HL-LHC
- Lecture 2 (Friday 29 July, 9:15)
 - The quest for precision (2030-2050): Linear or Circular ?
- Lecture 3 (Friday 29 July, 10:20)
 - The energy frontier (2045-2080): Leptons or Hadrons ?
 - Thinking out of the box: Muon collider
 - Towards the next European Strategy update (2019-2020)

Lecture 3 (1st part)

Patrick Janot

Reminder: The big questions (1)

- **D** The days of "guaranteed discoveries" are over ...
 - ... but the big questions remain :
 - What's the origin of dark matter ?
 - What's the origin of baryon asymmetry in the Universe ?
 - What's the origin of the neutrino masses ? Why are they so light ?
 - What's the origin of electroweak symmetry breaking ?
 - What's the solution to the hierarchy problem ?
- **D** The future of HEP will be mostly driven by experimental exploration
 - Rather than by deeply-rooted theoretical motivations

Reminder: The big questions (2)

- Key issue after LHC Run1 (and, hopefully not, but possibly after Run2)
 - Why don't we see new physics?
 - Is the new physics mass scale beyond the LHC reach?
 - Is the mass scale within LHC reach, but final states are elusive?
 - Swamped by large backgrounds?
 - Very weak couplings ? Very rare decays ?
 - ➡
 - These two scenarios are a priori equally likely
 - Future colliders must be ready to address both, with
 - Precision for indirect hints at new physics (see also Lecture 2)
 - Sensitivity to elusive signatures (see also Lecture 2)
 - Extended energy / mass reach for direct discovery (now)

Precision requires statistics (1)

Reminder: Luminosity targets of e⁺e⁻ colliders at high energy

- Design of ILC kept compatible with a later energy upgrade to 1 TeV
 - Luminosity target for ILC at 1 TeV: ~2 ab⁻¹

Precision requires statistics (2)

- Preliminary parameters for FCC-hh
 - Compared to LHC and HL-LHC

Parameter	LHC HL-LHC		FCC-hh	
√s (TeV)	1	100		
Circumference (km)	26	100 (80)		
Dipole field (T)	8.3		16 (20)	
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1 5		5 [→ 30]	
Integrated Lumi (ab ⁻¹)	0.3 3		3 [→ 30]	
Bunch spacing (ns)	25		25 { <mark>5</mark> }	
Events / bunch crossing	35 140		170 {34} [→ 1020 { 204 }]	
Total SR Power (MW)	0.007	0.015	5 [→ 30]	

- Ultimate luminosity target: 30 ab⁻¹ at $\sqrt{s} = 100$ TeV
- Cross sections increase significantly from $\sqrt{s} = 14$ TeV to $\sqrt{s} = 100$ TeV
 - In general, statistical precision will not be not an issue at FCC-hh

Precision: Higgs properties at high energy (1)

- Why would we continue to do precision Higgs physics at high \sqrt{s} ?
 - Precision achieved with e^+e^- colliders at $\sqrt{s}=240-350$ GeV : 0.1% 1%
 - Far superior than what can be done at higher energy
 - σ (HZ) decreases, kinematics less favourable, backgrounds increase, ...
 - Far superior than what can be done at pp colliders
 - HL-LHC will already be limited by systematic uncertainties
- However ...
 - Some production processes are not directly accessible at low-energy e⁺e⁻ colliders
 - Hence more couplings might become measurable at larger energy
 - ➡ e.g., Htt, HHH, HHHH, ...
 - Some decay channels have very small branching fractions
 - Hence need more than 2×10⁶ Higgs bosons to be measured with precision
 - ► e.g., H → µµ, γZ, …
 - Systematic uncertainties at FCC-hh can be reduced by using ratios
 - Normalized to the precise measurements made in e⁺e⁻ collisions

Precision: Higgs properties at high energy (2)

- Access to direct ttH coupling and Higgs self coupling measurements
 - Luminosity (at and) above 500 GeV essential for ttH
 - Larger energies essential for HHH

Precision: Higgs properties at high energy (3)

D Production in pp collisions

- With 30 ab⁻¹ at FCC-hh
 - 10⁹ gg \rightarrow ttH events, 5×10⁷ gg \rightarrow HH events, 5×10⁸ gg \rightarrow H \rightarrow $\mu\mu$
 - ► Statistical precision won't be much of a problem, even after selection

Precision: Higgs properties at high energy (4)

- Example: ttH coupling @ FCC-hh
 - Measurement of λ_t with $\sigma(ttH) / \sigma(ttZ)$, with $H \rightarrow ZZ$, WW, $\tau \tau \rightarrow$ leptons (+H \rightarrow bb, $\gamma \gamma$)
 - Very similar production mechanism, gg production dominant

- Most theory uncertainties cancel: < 1% precision possible on σ (ttH) / σ (ttZ)
 - Denominator given by FCC-ee with a precision of 1.5%
 - + Higgs boson BR's given by FCC-ee with a precision of a few 0.1%

Precision: Higgs properties at high energy (5)

Achievable precisions

-0.05

-0.

-0.15

-0.2

-0.05

-0.04

-0.03

-0.02

Collider	HL-LHC	LC 500 GeV	LC 1-3TeV	FCC-ee+hh
λ_{t}	4%	7-14%	2-4%	<1%
λ_{H}	50%	30-80%	10-15%	<5%

- Higgs self-coupling (a) FCC-hh estimated with $qq \rightarrow HH \rightarrow bb\gamma\gamma$ so far (10⁵ events!) ٠
 - Other channels are under study

Sensitivity to new physics (example)

ttH less sensitive than bbH+ZZH@FCC-ee ٠

LHC

LC

-0.01

0

⊖ FCC-ee

Patrick Janot

Physics at Future Colliders 28-29 July 2016

0.01 $\Delta g_{HZZ} / g_{HZZ}$

Precision: WW scattering at high energy

- Why WW scattering (and Higgs pair production)?
 - In the SM, Z and H exchange diagrams diverge, but exactly cancel each other
 - Anomalous couplings, as relics of new physics, would have dramatic effects
 - ► Total WW scattering / Higgs pair cross section diverge with m⁴ww,HH

Extended mass reach: Supersymmetry (1)

Production in e⁺e⁻ collisions

- If the spectrum is light enough
 - CLIC can produce a whole bunch of new particles (+Dark Matter) with masses below 1.5 TeV
 - And measure the masses with per-cent precision
- Unique opportunity to probe the supersymmetry breaking mechanism

$\frac{\sqrt{s}}{(\text{TeV})}$	Process	Decay mode	SUSY model	Measured quantity	Generator value (GeV)	Stat. uncertainty
3.0 Sleptons		$\widetilde{\mu}^+_R \widetilde{\mu}^R \to \mu^+ \mu^- \widetilde{\chi}^0_1 \widetilde{\chi}^0_1$		$\tilde{\ell}$ mass $\tilde{\ell}^0$ mass	1010.8	0.6%
	$\widetilde{e}_{-}^{+}\widetilde{e}_{-}^{-} \rightarrow e^{+}e^{-}\widetilde{\gamma}_{-}^{0}\widetilde{\gamma}_{-}^{0}$	II	χ_1 mass $\tilde{\ell}$ mass 20	1010.8	0.3%	
	I	$\widetilde{v}_{R}\widetilde{v}_{R} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}e^{+}e^{-}W^{+}W^{-}$		$\widetilde{\chi}_1^0$ mass $\widetilde{\ell}$ mass $\widetilde{\chi}^{\pm}$ mass	340.3 1097.2	1.0% 0.4%
	$\approx + \approx \approx 0 \approx 0 m + m -$		χ_1 mass $\tilde{\chi}^{\pm}$	643.2	0.0%	
3.0	Neutralino	$\chi_1^{\prime}\chi_1^{\prime} ightarrow \chi_1^{\prime}\chi_1^{\prime} \mathbf{w}^+ \mathbf{w}$ $\widetilde{\chi}_2^0 \widetilde{\chi}_2^0 ightarrow \mathbf{h}/\mathbf{Z}^0 \mathbf{h}/\mathbf{Z}^0 \widetilde{\chi}_1^0 \widetilde{\chi}_1^0$	II	$\chi_1 \text{ mass}$ $\tilde{\chi}_2^0 \text{ mass}$	643.2 643.1	1.1% 1.5%
3.0	Squarks	$\widetilde{q}_R\widetilde{q}_R \to q\overline{q}\widetilde{\chi}_1^0\widetilde{\chi}_1^0$	Ι	$\widetilde{\boldsymbol{q}}_{R}$ mass	1123.7	0.52%
3.0	Heavy Higgs	$\begin{array}{l} H^0 A^0 \rightarrow b \overline{b} b \overline{b} \\ H^+ H^- \rightarrow t \overline{b} b \overline{t} \end{array}$	Ι	${ m H^0/A^0}\ { m mass}\ { m H^\pm}\ { m mass}$	902.4/902.6 906.3	0.3% 0.3%

Patrick Janot

Physics at Future Colliders 28-29 July 2016

Example: Heavy Higgses

Extended mass reach: Supersymmetry (2)

- **D** Production in pp collisions
 - If the spectrum is heavier (as hinted at by the so-far negative LHC searches)
 - Higher energy will be needed
 - ► Example: gluino discovery reach ~ (5) 11 TeV with 3 ab⁻¹ @ (HE-LHC) FCC-hh

Extended mass reach: Supersymmetry (3)

• Updated super-summary

Extended mass reach: New gauge bosons (1)

- Example 1: Searches for new Z'
 - FCC-hh directly sensitive up to m_{Z'} ~ 30-35 TeV (vs. ~ 3TeV for CLIC)
 - By looking for di-lepton resonances
 - CLIC 3-TeV indirectly sensitive up to m_{Z'} ~ 15-20 TeV
 - By looking for deviations in the di-lepton mass distribution at high mass

Extended mass reach: New gauge bosons (2)

- Example 2: Searches for new W'
 - e.g., as a resonance in the di-jet mass (or I + E_T^{miss} distribution) at FCC-hh
 - Sensitivity as a function of integrated luminosity

Extended mass reach : Other exotica @ FCC-hh

- □ 14 TeV (300 fb⁻¹) \rightarrow 100 TeV (3 ab⁻¹) with pp collisions
 - Rule of thumb: a factor 5 in mass reach from LHC to FCC-hh
 - Then ad one unit for each factor 10 in luminosity

Not just a mere extrapolation: Rare decays

- At FCC-hh, 30 ab⁻¹ at 100 TeV imply
 - ♦ 3×10¹⁰ Higgs bosons = 10⁴ today's statistics, 10⁴ FCC-ee statistics
 - More precision measurements
 - Rare decays, FCNC probes, e.g., $H \rightarrow e\mu \dots$
 - 3×10¹² top quarks = 10⁵ today's statistics, 3×10⁶ FCC-ee statistics
 - Rare decays, FCNC probes, e.g., t→cZ, cH
 - CP violation
 - 10¹² W and 10¹² b from top decays
 - $10^{11} \tau$ from t $\rightarrow W \rightarrow \tau$
 - → Rare decays, e.g., $\tau \rightarrow 3\mu$, $\mu\gamma$, CP violation ...
 - BSM decays : any interesting channels to consider ?
 - Example: Majorana neutrino search in top decays

Majorana neutrinos and lepton-number-violating signals in top-quark and W-bosc rare decays

Shaouly Bar-Shalom^{*a*}, Nilendra G. Deshpande^{*b*}, Gad Eilam^{*a*}, Jing Jiang^{*b*}, and Amarjit Soni⁽¹⁾

Not just a mere extrapolation: Detectors (1)

- Experimental conditions at CLIC
 - Important beamstrahlung due to bunch charge density
 - Radiated photon and electron-pair background
 - Pile-up of photon-photon collisions (mini-jets)
 - Reduction of effective centre-of-mass energy

Not just a mere extrapolation: Detectors (2)

- Experimental conditions at CLIC, cont'd
 - To find elusive signatures, detectors will have to deal with these conditions
 - High-granularity calorimeter and tracker
 - ➡ for ultimate jet-energy resolution (no √s constraint)
 - for individual particle characterization (timing)
 - Excellent timing resolution
 - to mitigate γγ pile-up interactions

Not just a mere extrapolation: Detectors (3)

- Detectors for FCC-hh: a formidable challenge, well beyond HL-LHC
 - Up to 1000 in-time pile-up events with 25 ns bunch spacing, bunch length 5 cm
 - High-granularity calorimetry, tracking and vertexing required
 - Reduced to 200 in-time pile-up events with 5 ns bunch spacing
 - Ultra fast detectors required (out-of time pile-up)
 - Large longitudinal event boost
 - Enhanced coverage at large rapidity required (with tracking and calorimetry)
 - ➡ Also need for forward-jet tagging in boson fusion production
 - Zs, Ws, Higgses, tops, will also be boosted
 - Again, high-granularity detectors needed
 - Very energetic charged particles
 - Precise momentum measurement up to 10 TeV: strong B field (6T) and large tracker
 - Very energetic jets
 - Energy containment require thicker calorimeter

Bigger, thicker, faster, stronger, clever detectors

Not just a mere extrapolation: Detectors (4)

- Initial option: Twin Solenoid 6T, 12m bore, Dipoles 10Tm
 - Length ~ 60 m ٠
 - Radius ~ 15 m ٠

- ♦ Cost ~ 2-3 BCHF not entirely reasonable
 - Scale down magnet system to 10m, 4T solenoid and 4Tm dipoles
 - Reduces the cost by a factor 2.

Summary at this point (1)

 \geq 50 years of e⁺e⁻ (e⁻e⁻, $\gamma\gamma$) collisions up to $\sqrt{s} \sim 3$ TeV 24

Summary at this point (2)

- Two very ambitious visions for the future (cont'd)
 - PLAN α

 \geq 50 years of e⁺e⁻, pp and ep collisions at highest energies

Summary at this point (3)

- Two very ambitious visions for the future (cont'd)
 - Both visions have different, but solid, technological maturity
 - The linear collider vision is the most advanced from the design point-of-view
 - Many test facilities have proven the acceleration technology to work
 - But the associated risk is still quite high (final focus, positron source, ...)
 - The circular collider vision is much younger
 - But is strongly backed up by 50 years of experience, by historical successes
 And by projects that will prove its feasibility (SuperKEKB, HL-LHC)
 - The scientific case is obvious
 - Precision studies for new physics at high mass or with small couplings
 - Energy frontier for new physics at high mass and with large couplings
 - My own impression
 - Beyond the LHC Run2, the combination of FCC-ee and FCC-hh offers, for a great cost/infrastructure effectiveness, the best precision and the best search reach

Summary at this point (4)

- This impression will have to be reviewed
 - After the LHC Run2
 - After 5 years of FCC study
- **A whole set of new discoveries might still be waiting for us in LHC Run2**
 - ... or it may be decades before the next big discovery
 - Meanwhile, the LHC will set the scene for precision physics and rare decay searches
- **•** Future options will need a long time to materialize
 - None of the options is cheap (from ~5 B\$ to 20 B\$)
 - Clear and global planning/funding are probably needed
 - Criteria for choice include
 - Scientific potential
 - Cost, funding availability, sociology
 - Technological maturity

• Next update of the European Strategy in 2019-2020 : stay tuned !

Lecture 3 (2nd part)

Thinking out of the box Muon Colliders

Note:

- Muon colliders were not identified as priority by the European Strategy update in 2013.
- However, interest has recently with new ideas that may make them realizable
- It is therefore important to understand the relevant ins and outs

Why muon colliders ?

- Muons are leptons (like electrons)
 - Collisions at the full energy, small physics background, (E,p) conservation
 - Muons can a priori do all what electrons can do
- Muons are heavy (like protons)
 - Negligible synchrotron radiation, no beamstrahlung
 - Small circular colliders, up to large \sqrt{s}
 - Excellent energy definition (up to a few 10⁻⁵)
 - Large direct coupling to the Higgs boson
 - Unique Higgs factory at √s = 125.093 GeV
- Muons are naturally longitudinally polarized (100%)
 - Because arising from π^{\pm} decays to $\mu^{\pm}\nu_{\mu}$
 - Ultra-precise beam energy and beam energy spread measurement
- Muons eventually decay (in 2.2 μ s) to $ev_{\mu}v_{e}$
 - Outstanding neutrino physics programme
 - Muon colliders could be the natural successors of neutrino factories?

Muon colliders challenges until 2014

Muons decay: Produce, Collect, Cool, Accelerate and Collide them fast !

- Intense proton driver to get the adequate number of muons
 - At least 4 MW for the desired muon luminosities
- Robust target to not evaporate at the first proton bunch
 - Re-circulating liquid metal
- Efficient muon collector from pion decays
 - Magnetic fields of 2oT
- Unique 6D muon cooling
 - To reduce beam sizes and beam energy spread
- Fast acceleration and injection into circular ring(s)

All these aspects are at the level of intense R&D. Will require decades to demonstrate feasibility

Muon colliders challenges since 2014?

• Clever alternative

- Intense e⁺ beam with E = 45 GeV
 - 100 kW suffice for the desired muon luminosities
- Non destructive target for $e^+e^- \rightarrow \mu^+\mu^-$
 - Keep the e⁺ beam in a ring
 - Unique synergy with FCC-ee
 - Energy Recovery Linac is also a possibility
- Production at threshold ($\sqrt{s} \sim 2 m_{\mu}$)
 - Quasi monochromatic muons, almost no need for cooling
 - Except for the Higgs factory
- Fast acceleration and injection into circular ring(s) remain as in the proton-driver option

If feasible, this design would probably be faster, cheaper, and easier than the proton-driver option

Muon collider optimal circumference(s)

- **D** Muon decay: Minimize the ring circumference
 - To allow the produced muons to collide as many times as possible before they decay
 - With 14T state-of-the-art dipoles, the optimal ring size is proportional to E_{μ}

√s	91 GeV	126 GeV	161 GeV	350 GeV	6 TeV	24 TeV	
$t = \beta \gamma \tau_{\mu}$	0.94 ms	1.27 ms	1.67 ms	3.64 ms	68.7 ms	280 ms	
$L = βγcτ_{μ}$	284 km	383 km	502 km	1092 km	20600 km	84000 km	
Ring	100 M	140 m	180 m	385 m	6.6 km	27 km	
N _{turns}	~2840 turns						

- One ring per centre-of mass energy
 - Two very small rings for precision studies
 - One for Z and H factories (140 m circumference)
 - One for W and top pair thresholds (385 m circumference)
 - One larger ring for the energy frontier
 - → $\sqrt{s} = 6$ TeV can fit, for example, in the Tevatron (6.6 km circumference)
 - → $\sqrt{s} = 24$ TeV can fit in the LHC
 - Plus a number of rings for first stages of fast accelaration

Muon collider as a Higgs factory (1)

Challenges for the Higgs factory

- $\Gamma_{\rm H}$ is small (4.2 MeV in the SM)
 - Similar or smaller beam energy spread is required (3 × 10⁻⁵)
 - Fast longitudinal cooling to reduce energy spread
 - Beam energy reproducibility must be at the same level or better
- $\sigma(\mu^+\mu^- \rightarrow H)$ is about 20 pb
 - Luminosity must be at the level
 - of 1.5 × 10³² cm⁻²s⁻¹ for the same number of Higgs bosons as ILC ...
 - and at the level of 3.5 × 10³³ cm⁻²s⁻¹ for the same number of Higgs bosons as FCC-ee
 - Fast transverse cooling to reduce beam spot dimensions
 - And the Higgs bosons produced are not tagged with a Z anyway ...
- Problem
 - Longitudinal and transverse cooling are antagonistic
 - Luminosity is limited (as of today's knowledge) to a few 10³¹ cm⁻²s⁻¹

70⊟ Born Х (1): with ISR 60 (2): $\delta E/E = 3 \times 10^{-5}$ н 50 (3): $\delta E/E = 6 \times 10^{-5}$ [qd] 40 Х (1) **σ(S)** 30 20 10 125.69 125.695 125.7 125.705 125.71 √s (GeV)

Muon collider as a Higgs factory (3)

- **D** Physics performance of a Higgs factory
 - Scan of Higgs resonance in the inclusive, bb, and WW final states

• Ten years of data taking at 10³¹ cm⁻²s⁻¹, – just count events

- Measure Γ_H to 5% in 10 years (Cf. 4% at ILC, <1% at FCC-ee)
 - Only way to see a structure in the resonance (several Higgs bosons?)
- Measure σ_{peak} ~ BR_{µµ} to 2-3% in 10 years
- Other expected measurements on the next slide.

Muon collider as a Higgs factory (4)

Summary of precision measurements (after ~10 years of running)

Error on	μμ Collider	ILC	FCC-ee	Not sure of the practical use
m _H (MeV)	0.06	30	8	of such a precision on m _H
$\Gamma_{ m H}$ (MeV)	0.17	0.16	0.04	The Higgs width is
9 ньь	2.3%	1.5%	0.4%	best measured at ee colliders
g _{Hww}	2.2%	0.8%	0.2%	These Higgs couplings are
g _{Htt}	5%	1.9%	0.5%	best measured at ee colliders
g _{нүү}	10%	7.8%	1.5%	
g _{Hμμ}	2.1%	20%	6.2%	The SM Higgs coupling to muons is <i>the</i> added value of a wu collider *
Я _{нzz}	-	0.6%	0.15%	
g _{нсс}	-	2.7%	0.7%	These Higgs couplings are
g _{Hgg}	-	2.3%	0.8%	<u>only</u> measured at ee colliders *
BR _{invis}	-	<0.5%	<0.1%	* pp colliders have their say, too

• Note: BR(H \rightarrow µµ) can also be measured with % precision at FCC-hh. (Will be already 10% after LHC.)

Muon colliders at the energy frontier (1)

- Muon colliders might be a solution for high energy in the (far?) future
 - Many challenges to solve with sustained R&D and innovative thinking, as to
 - increase luminosity for precision studies;
 - solve the radiation hazard at high energy (decay neutrino interactions with Earth)
- **•** For the record, here are the current target performance

√s (TeV)	0.091	0.125	0.3	1.5	3.0	6.0
Lumi (10 ³⁴ cm ⁻² s ⁻¹)	0.01	< 0.008	0.2	1	4	15
R = Δp/p (%)	0.1	0.003	0.1	0.1	0.1	0.1

- Larger than CLIC above 1.5 TeV
 - With the possibility of several IPs

Muon colliders at the energy frontier (2)

- Muon colliders might be a solution for high energy in the (far?) future
 - With an acceptable power consumption

Muon colliders: Summary

- A muon collider may be the best way to get lepton collisons at $\sqrt{s} \ge 3$ TeV
 - Much R&D remain in, e.g., muon cooling (or not) / acceleration
- □ A muon collider at $\sqrt{s} = 125$ GeV is a very pretty Higgs factory ($\mu^+\mu^- \rightarrow H$)
 - But not necessarily the one we need
 - If H(125) is a single particle, the process e⁺e[−] → HZ ⓐ 240 GeV is better suited
 - In particular, e⁺e[−] can measure the Higgs width very well
 - A muon collider can also do that, but much higher luminosity would be necessary
 - → At least two orders of magnitude limited by the p/e⁺ source.
- **Several quasi-degenerate Higgs bosons is a strong case for muon colliders**
 - If Δm is between 4 MeV ($\Gamma_{\rm H}$) and ~100 MeV (LHC resolution)
 - Such a situation may occur with two Higgs doublets, and quasi-degenerate H & A
 - Isolate the two peaks and perform nice CP studies !
- A muon collider is the natural second step of neutrino factories / FCC-ee
- Conclusion: don't kill it, but don't oversell it !

Towards the next strategy update (2019) Personal views

What have we learnt since 2013?

- LHC accelerator
 - Successful refurbishment towards $\sqrt{s} > 13$ TeV in 2013-14
 - The Run2 at $\sqrt{s} = 13$ TeV proceeds extremely well possibly 50 fb⁻¹ in 2016 !
- LHC detectors
 - The experiments continue to perform very well, too see ICHEP results @ Chicago
- **LHC Physics**
 - No convincing hints of strong deviations from Standard Model just as yet
 - Direct BSM searches, Higgs properties, SM & HF measurements
- Policy / Politics
 - The FCC design study has started at CERN, with financial support
 - All configurations are pursued: ee, hh, eh
 - The P5 process has come to an end in US in 2015
 - Strong support for HL-LHC as the highest global priority
 - Long-term US-domestic accelerator-based particle physics program (v's @ LBNF)
 - China
 - Discussions of possible circular machine (50-70km so far)
 - Current focus on 250 GeV e⁺e[−] machine, followed by 50 TeV pp collider

What will we know after LHC Run 2 ?

- **If new physics is found in LHC Run 2**
 - It will (hopefully) point to best new accelerator to build
 - Which in turn will make it easier to get financial / political / societal support for this accelerator
- Much greater challenge if no new physics is found in Run2
 - Cannot continue indefinitely with R&D towards all possible future facilities
 - A choice will have to be made in 2019-2020
 - However, it is impossible for the LHC to rule out all possible new particle with m < 1 TeV (say)
 - In a model independent fashion
 - Some very difficult and painful judgment calls will have to be made
 - HL-LHC duration
 - Minimal energy / luminosity for a lepton / hadron collider

Personal views

- □ Very clear physics case for an e^+e^- collider with 90 < \sqrt{s} < 350-500 GeV
 - Precision Higgs and electroweak physics (Z pole and WW/tt thresholds)
 - Precision measurements at the Z pole start to look like the poor relation in this plot

- Calls for much more precise measurements at the Z pole
- Also calls for significant theoretical progress in this area
- Measurements of W, H, top properties will give orders of magnitude improvements

Personal views

- □ Very clear physics case for an e^+e^- collider with 90 < \sqrt{s} < 350-500 GeV
 - Precision Higgs and electroweak physics
- Much harder to make physics case for e^+e^- colliders with $\sqrt{s} > 350-500$ GeV
 - At least without clear evidence for accessible new particles
 - Produced copiously in e⁺e⁻ or γγ collisions
- Need serious assessment of relative merits of ILC and FCC-ee
 - As precision machines as we have done in this series of lectures
 - ... plus some RealPolitik, of course
 - T2K highest priority for Japan, strengths of the collaborations, ... etc
- Hard to imagine next major investment in R&D for CLIC (~300 MCHF)
 - Without clear evidence of new physics to study

Exploration of energy frontier seems best done with a hadron collider

• e.g., FCC-hh

Even more personal views

- Will China be in a position to build an e⁺e⁻ Higgs factory ?
 - Maybe followed by a hadron collider ?
 - Financially, yes ! But ...
 - ... size of the community, expertise, scientific and organizational structure
 - In both accelerator and particle physics
 - ... and political progress not as fast as anticipated
- There will be, most probably, only one such machine in the world
- Don't underestimate the value of CERN
 - ... and its 60-years track record and treaty in comparison
- CERN should continue to expand geographically
 - With new associate member states
 - With financial contributions of associate members
 - ... and maybe persuade China to make a large in-kind contribution to accelerator?

Conclusions of this series of lectures

- The journey towards the future of HEP will probably be long and tortuous
 - You can make it enjoyable for yourself:
 - Always keep your passion for science
 - Apply healthy practical common sense
 - Follow your dreams

