Higgs Drawbacks

- So with the addition of a Higgs boson around 125 GeV particle physics could be "complete"
 - Like Mendeleev's table for chemistry, but not understood. By itself, the Higgs is very unsatisfactory:
 - Why are the couplings to the fermions what they are?
 - Dumb luck (aka landscape)?
 - What is the link to gravity?
 - What about Dark Matter?
 - Why does the Higgs break the symmetry?
 - Why are there 3....?

Hunting for Answers

- Get more information
 - Measure particles and their interactions in detail
 - Precision measurements (e.g. LHCb)
 - Observe new particles or interactions
 - Search in new areas in "phase space"
- Find the underlying pattern(s)
 - Hypothesize, build models
 - Internally consistent? Consistent with data?
 - Suggestions on where to look

heory

Where to Start?

- BSM physics must couple to SM (if it helps with the hierarchy problem), but is it
 - Resonant?
 - Does it have new massive particles decaying to electrons, muons, quarks, W, Z,...?
 - "SM-like"?
 - Same but includes some new long-lived particles in the decay chain... (e.g. dark matter candidate)
 - No new "particles" in reach
 - Hidden or too heavy or.... don't exist
 - Are there new interactions?

Physics @ LHC

- Tevatron was mega-W
- LHC is
 - Giga-W
 - Giga-Z
 - Top factory (~giga-top)
 - Higgs factory (mega-Higgs)
 - New physics factory?

Experimental Searches

- By final state, so main questions are
 - Does the new physics produce dark matter?
 - Something we basically know exists and interacts weakly at best with SM
 - ➡ Yes: signatures contain missing transverse energy
 - ➡ No: MET not generic signature
 - Are there new interactions?
 - ➡ No: we know how to calculate everything
 - ➡ Yes: strong (resonances) or very weak (long-lived particles) or...?
- e.g. SUSY is (Yes,No) if R-parity, technicolor (No,Yes)....

With Dark Matter

(Super)Symmetry Solution

- If for every fermion there is a partner boson and vice-versa
 - Loops cancel each other
- Symmetry cannot be exact (no bosonic electron observed)
 - Symmetry breaking leads to "residual" Higgs mass

Canonical SUSY

Wide range of signatures

- Strong production... (large cross-section)

- ... or weak production

RPV

Missing ET

- "Evil" variable: Σ (everything else)
 - Need to understand "everything else"
 - Good benchmark: leptonic W boson decays

Analyses using MET are particularly sensitive

- Requires the full calorimeter to behave, and calorimeter is generally the most sensitive subdetector (analog, ~16 bits)
- Easy: basic DQ (high voltage trip, etc.)
- Hard: low frequency
- Can't spot a 10⁻⁵ Hz (once a day) effect online or in first pass DQ
 - But can be biggest part of dataset after cuts!

With "cleaning", QCD evaluated from data,...

♦ Already ~200k clean W → *ℓv* events in 2010

- Almost a billion now

SUSY as a Benchmark

- ◆ Hadron collider ⇒ produce squarks and gluinos decaying to jets + MET
 - Optimize jet p_T & MET cuts for different scenarios, since gluinos produce more jets than squarks
 - Use M_{eff} to discriminate, measure of event Q²

CERN 2016

Leptons in decay chains....

All Praise COM Energy!

Tevatron blown away.... 8 (2016) hours of LHC data

We've Found a Higgs!

If new scale, these go to the new scale...

To ~cancel these, need to primarily compensate for

- Тор

- W/Z

Discovery of the light Higgs refocuses new physics search

SUSY and the Higgs

For SUSY, 125 GeV is rather heavy!

- Need light higgsinos, stops, sbottoms... but heavy "light" squarks ⇒ "natural SUSY"
- Stop at the forefront!

Stop Searching Anatomy

Stop Searching Anatomy

Many Many Limits... Sigh

CERN 2016

1400

m_ã [GeV]

1500

section x BR [fb]

excluded cross

Ч

95%

give

Numbers

1400

m_ã [GeV]

Stop Searching Anatomy

Same-Sign Leptons

- At hadron colliders, leptons signify something interesting happened
 - E.g. Z production
- Same-sign leptons even more interesting? Lower background?
 - $W^{\pm}W^{\pm}$
 - but also B/D meson oscillations
 - mostly low p_T
 - and wrong charge measurement
- With lower background, access to smaller cross-sections, smaller mass gaps
 - At the cost of small branching ratio

Same Sign Lepton Excesses

CMS (SUSY), http://arxiv.org/abs/1311.6736

(24 signal regions in paper)

$\mathbf{SR1b}$ 1bin	Total	ee	$e\mu$	$\mu\mu$
Observed events	10	6	4	0
Total expected background events	4.7 ± 2.1	1.4 ± 0.8	2.1 ± 1.1	1.2 ± 0.4
Components of the background $t\bar{t}V, t\bar{t}H, tZ$ and $t\bar{t}t\bar{t}$ Dibosons and tribosonsFake leptonsCharge-flip electrons	$\begin{array}{c} 2.5 \pm 1.7 \\ 0.9 \pm 0.4 \\ 0.8 \substack{+1.2 \\ -0.8 \\ 0.5 \pm 0.1 \end{array}$	$\begin{array}{c} 0.6 \pm 0.3 \\ 0.10 \pm 0.04 \\ 0.4 \substack{+0.7 \\ -0.4} \\ 0.3 \pm 0.1 \end{array}$	$\begin{array}{c} 1.2 \pm 1.0 \\ 0.3 \pm 0.1 \\ 0.4 \substack{+0.5 \\ -0.4} \\ 0.3 \pm 0.1 \end{array}$	0.7 ± 0.3 0.5 ± 0.3 < 0.1
p(s=0)	0.07	0.01	0.18	0.50

ATLAS (SUSY), http://arxiv.org/abs/1404.2500

(5 signal regions in paper)

CMS (ttH), http://arxiv.org/abs/1408.1682

ATLAS (TT), http://arxiv.org/abs/1504.04605

ATLAS (ttH), http://arxiv.org/abs/1506.05988

It certainly looks like multiple analyses looking at same sign leptons and b-jets see excesses! Could it be SUSY? E.g. $\tilde{t}_R \to t + \tilde{B} \to t + (\tilde{W}^{\pm} + W^{\mp})$

Huang et al, http://arxiv.org/abs/1507.01601

Same Sign Lepton Excesses

CMS (SUSY), http://arxiv.org/abs/1311.6736

CMS (ttH), http://arxiv.org/abs/1408.1682

(24 signal regions in paper)

ATLAS

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

SRVLQ2

SRVLQ1

SRVLQ3 SRVLQ4

ATLAS (TT), http://arxiv.org/abs/1504.04605

U 10⁴

10

10

10

Significar

ATLAS (SUSY), http://arxiv.org/abs/1404.2500

(5 signal regions in paper)

ATLAS (ttH), http://arxiv.org/abs/1506.05988

The ATLAS analyses are correlated, and same for CMS So, ~2 analyses and excesses are < 3 σ Worth keeping an eye on? Sure.

🔶 Data

T tĨH

Other

_____ ttW/Z

Dibos

SRVLQ5 SB4t2 SRVLQ6 SR4t3

Fake/non-prompt leptons

Not much there.... so far

Anecdotes From the Field (II)

- ttbar charge asymmetry at the Tevatron
 - At Feynman diagram level, NLO effect (Tevatron is proton-antiproton collider)

Anecdotes From the Field (II)

- ttbar charge asymmetry at the Tevatron
 - At Feynman diagram level, NLO effect (Tevatron is proton-antiproton collider)

http://arxiv.org/abs/1107.4995

Ca. 2010, big fuss: much larger than SM!

- In real life, already exists at ~LO!
 - Shown it is there in Pythia: parton shower, recoils! http://arxiv.org/abs/1205.1466

(My) current conclusion:no BSM physics here: just (N)NLO+ non-perturbative effects at work

Not SUSY?

- SUSY theories (and others with full or partial set of SM-partners) have a number of attractive features
 - "Explanation" for low Higgs mass (and sometimes EWSB)
 - Gauge coupling unification (often)
 - Dark matter candidate (if introduce a new parity, natural in UED, ~ad-hoc in SUSY)
 - No new interactions (often)

- But answering those questions comes at a large cost
 - Many new particles, with masses and mixing angles
 - Need to explain why mass scale is so low (or high), spin?

Not SUSY?

- SUSY theories (and others with full or partial set of SM-partners) have a number of attractive fea
 - "Explanation" for low Higgs mass (and s
 - Venus Gauge coupling unification (ofter
 - Dark matter candidate inosaurs on parity, natural in UE
 - No new inte

10¹⁵ Q [GeV] destions comes at a large

- particles, with masses and mixing angles Ma
- Need to explain why mass scale is so low (or high), spin?

🔅 But a

COS

LHC &

et al.

10¹⁶

1: Allanach

nep-ph/0407067

24

LC/GigaZ

Less Ambitious

Giving up on Dark Matter

Electroweak-scale WIMPs fit the data well

- But maybe hard/impossible to produce at colliders
- Or dark matter not WIMPs at all
- Back to problem #1:

Top partner!

Singlets, Doublets, ...

- Vector-like top partners (still fermions) less constrained by flavor....
 - Opens up decay modes
 - Top partner partners:
 - **- T**5/3

. . .

- Rich set of signatures
 - Just no huge MET
 - At least not systematically

♦ T→Wb with $m_T \sim 600 \text{ GeV}$

➡ W will be boosted, and if decays hadronically → single jet

CERN 2016

- ✤ T→Wb yields the same final state as t→Wb
 - Need to discriminate, e.g. reconstruct m_T

✤ T→Wb yields the same final state as t→Wb

- Need to discriminate, e.g. reconstruct m_T
- ✤ T→Ht: ttHH, so WWbbbb

 $T \rightarrow Wb$ yields the same final state as $t \rightarrow Wb$

- Need to discriminate, e.g. reconstruct m_T
- ✤ T→Ht: ttHH, so WWbbbb

 $T \rightarrow Wb$ yields the same final state as $t \rightarrow Wb$

- Need to discriminate, e.g. reconstruct m_T
- ✤ T→Ht: ttHH, so WWbbbb

Systematic Uncertainties

- Statistical uncertainties are easy: with limited number of events (and experiments), precision on a measurement is limited
- Systematic uncertainties vastly more complex
 - Example: measure a cross-section: $\sigma = \frac{N_{\text{events}}}{I_{\text{L}}A_{\text{C}}}$
 - L is the integrated luminosity, A the acceptance, ε the efficiency
 - Statistical uncertainty comes from Nevents
 - Systematic uncertainties arise from limited knowledge of L, A and $\boldsymbol{\epsilon}$
 - L is estimated from Van der Meer scans
 - A typically depends on parton distribution functions
 - efficiency is a convolution of many experimental uncertainties

- H_T is the sum of scalar energies of jets, leptons,...
 - If the jet energy scale is different between data and MC, comparison is wrong
 - If the jet energy scale dependence on jet energy is wrong, distort shape
 - etc.
- But how do I determine the jet energy scale uncertainty?
 - testbeams (single pions)
 - dijet balance
 - γ/Z+jet balance

. . .

Systematics Profiling

- Systematic uncertainties are propagated through the full analysis chain to the discriminating distribution
 - E.g. we repeat the analysis with jet energy scale shifted up & down by 1σ
 - Some systematic uncertainties affect shape (jet/lepton/photon reconstruction efficiency, energy scale and resolution, p_T distributions, background models), others only normalization (lepton reconstruction efficiencies and momentum calibration, background normalizations, theoretical cross-sections and luminosity)
 - Systematic uncertainties are treated as nuisance parameters when fitting signal+background to the data
 - I.e. modify signal and background shape
 - Can be fixed, or allowed to change

- Nuisance parameters tend to be correlated, but not 100%, among backgrounds
 - Can affect rates, shapes, or both (in any distribution), and often asymmetric and non-gaussian

- Generate pseudo-experiments (events in bins according to poisson), then for each experiment vary nuisance parameters
 - Variations in background (& S+B) prediction
 - Compare results to data using log-likelihood ratio
- ♦ We can maximize likelihood ratio as a function of nuisance parameters → constrain them
 - I.e. use full shape of distribution(s) to see which background uncertainties are over/underestimated
 - Of course limited to size of statistical fluctuations
 - Can remove bins with large S/B if needed
 - Mostly important if uncertainties lead to similar shape distortions
 - Want enough background-rich phase space in fit!
 - Even include control regions

Test example:

- Data constructed to disagree with background-only hypothesis (wrong estimates for background uncertainties)
- But to agree with background-only better than signal+ background
 - Improvement quite spectacular (by construction in example)

ATLAS ttH search: arXiv:1503.05066

Fit Results

- Need to compare starting point and results
 - Pathologies due to lack of MC stats in some areas, strong correlations, ...
- Crucial to design analysis with good control regions the fit can use to address least understood systematics

ATLAS ttH search: arXiv:1503.05066

All Together Now

Presented Differently

