

Nuclear physics: the ISOLDE facility

Lecture 2: CERN-ISOLDE facility

Magdalena Kowalska

CERN, EP-Dept.

kowalska@cern.ch

on behalf of the CERN ISOLDE team <u>www.cern.ch/isolde</u>

Small quiz 2

Who are the two biggest VIPs in this photo (excluding the lecturer ;))?

Note: all ladies in this photo are real ISOLDE physicists!

Replies should be sent to Kowalska@cern.ch

Outline

Aimed at both physics and non-physics students

- Lecture 1: Introduction to nuclear physics
- **This lecture**: CERN-ISOLDE facility
 - Types of radioactive ion beam facilities
 - ISOLDE within CERN
 - Beam production at ISOLDE

Lecture 3: Physics of ISOLDE

Open questions in nuclear physics

RIB facilities

Two main types of (complementary) RIB facilities:

ISOL (Isotope Separation On-Line) and In-Flight

RIB facilities comparison

	ISOL	In-Flight
Projectile	light	heavy
Target	thick	thin
Ion beam energy		
Beam intensity		
Variety of nuclides		
Release from target		
Beam quality		
Examples	ISOLDE@CERN, SPIRAL@GANIL, ISAAC@TRIUMF	GANIL, GSI, RIKEN, NSCL/MSU

RIB facilities worldwide

Existing and in preparation

ISOLDE – short history

ISOLDE = Isotope Separator OnLine DEvice

CERN facility for production and studies of RIBs

Accepted: December 1964 First beam: October 1967 Upgrades: 1974 and 1988 New facility: June 1992 HIE-ISOLDE: October 2015

http://timeline.web.cern.ch/timelines/ISOLDE

ISOLDE at CERN

ISOLDE within CERN accelerators

ISOLDE elements

Isotope production via reactions of light beam with thick and heavy target

Production – ionization – separation

Production channels

Production targets

- Over 20 target materials and ionizers, depending on beam of interest
- U, Ta, Zr, Y, Ti, Si, ...
- Target material and transfer tube heated to 1500 – 2000 degrees
- Operated by robots due to radiation

Converter Target

Standard

Inside a standard target

In the early Copenhagen experiments a ten kilo target consisting of a mixture of baking powder [essentially $(NH_4)_2CO_3$] and uranium oxide was used. Fast neutrons from an internal beryllium target in the cyclotron were used to irradiate the external target, and the radioactive isotopes were produced by fission reactions in the uranium. The radioactive noble gases were then diffused out of the target and swept into the ion source of the isotope separator.

Ionization

- Surface
- Plasma
- Lasers

Beam extraction and separation

- All produced ions are extracted by electrostatic field (up to 60kV)
- The interesting nuclei are mass selected via magnetic field
 - Lorentz force: depends on velocity and mass
 - m/dm <5000, so many unwanted isobars also get to experiments</p>

Production, ionization, extraction

robots

18

Ion energy: 30-60keV

Separation

Magnet separators (General Purpose and High Resolution)

Post-acceleration

Production and selection - example

Example – astatine isotopes

- How to produce pure beams of astatine isotopes (all are radioactive)?
 - Use lasers to ionize them

Extracted nuclides

ISOLDE present layout

Facility photos

Experimental beamlines

Upgrades: HIE-ISOLDE project

Production of medical isotopes for trials (not commercial use) via ISOLDE "dump" protons -> little ISOLDE + chemical preparation

Use protons (~90%) normally lost into the **Beam Dump**

ISOLDE techniques and physics topics

Summary

- Two complementary types of RIB facilities
 - ISOL and in-flight
 - Several dozen facilities worldwide and new ones coming

ISOLDE at CERN

- ISOL-type facility which uses protons from PSB
- Elements: production target, ionization, extraction, separation, (postacceleration)
- Largest variety of beams worldwide
- Upgrade project: HIE-ISOLDE
- ISOLDE research topics:
 - > Nuclear physics
 - > Atomic physics
 - > Nuclear astrophysics
 - Fundamental studies
 - > Applications
 - > => Lecture 3

Research with radionuclides

REX post-accelerator

HIE-ISOLDE

Quarter-wave resonators (Nb sputtered)

- SC-linac between 1.2 and 10 MeV/u
- 32 SC QWR (20 @ $\beta_0\text{=}10.3\%$ and 12@ $\beta_0\text{=}6.3\%$)
- Energy fully variable; energy spread and bunch length are tunable. Average synchronous phase fs= -20 deg
- 2.5<A/q<4.5 limited by the room temperature cavity
- 16.02 m length (without matching section)
- No ad-hoc longitudinal matching section (incorporated in the lattice)
- New beam transfer line to the experimental stations

Reaction probability

Reaction probability

