

Nuclear physics: the ISOLDE facility

Lecture 3: Physics of ISOLDE

Magdalena Kowalska

CERN, EP-Dept.

kowalska@cern.ch

on behalf of the CERN ISOLDE team <u>www.cern.ch/isolde</u>

Outline

Aimed at both physics and non-physics students

- Lecture 1: Introduction to nuclear physics
- Lecture2: CERN-ISOLDE facility

This lecture: Physics of ISOLDE

- Measured properties
- Used techniques
- Recent results

Small quiz 3

ISOLDE physics topics

Nuclear shell model

5

- Created in analogy to the atomic shell model (electrons orbiting a nucleus)
- Based on the observation of higher stability of certain nuclei
 - filled shell of neutrons or protons results in greater stability
 - neutron and proton numbers corresponding to a closed shell are called 'magic'

Nuclei move in a self-created potential

Mean-field models

- Each particle interacts with an average field generated by all other particles: mean field
- Mean field is built from individual excitations between nucleons
- No inert core
- Very good at describing deformations
- Can predict properties of very exotic nuclei
- Not so good at closed shells

ISOLDE experimental setups

Laser spectroscopy and nuclear properties

Lasers allow studying ground-state (and isomeric) properties of nuclei, based on:

8

Atomic **hyperfine structure (HFS)** (interaction of nuclear and atomic spins)

- HFS details depend on:
 - Spin -> orbit of last proton&neutron
 - Magnetic dipole moment -> orbits occupied by p&n
 - Electric quadrupole moment -> deformations

Isotope shifts (IS) in atomic transitions (change in mass and size of different isotopes of the same chemical element)

- IS between 2 isotopes depends on:
 - difference in their masses & charge radii

Collinear laser spectroscopy

COLLAPS, CRIS, RILIS

Charge radii around lead

Studies with ion traps

Penning trap = cross of magnetic and electric field Ion manipulation with radiofrequencies Possibility of purifying the ion ensembles в **REX-TRAP WITCH** Ion motions axial (z) cyclotron (+) magnetron (-) **ISOLTRAP**

Penning-trap mass spectrometry

- Penning trap
 - superposition of static magnetic and electric field
 - Ion manipulation with radiofrequencies

Free cyclotron frequency is inversely proportional to the mass of the ions!

 $\omega_c = qB/m$

Penning-trap mass spectrometry

ISOLTRAP

Masses and nuclear structure

- Mass filters (mass differences) to "filter out" specific effects, e.g.
 - Differences in binding energies (one- or two-neutron/proton separation energies)

Two-neutron separation energy $S_{2n} = B(N - 2, Z) - B(N, Z),$

Closed shells visible as a sudden drop after the magic number (N=20 and 28)

Calcium-54 and nuclear forces

Mass of zinc-82

After several attempts at ISOLTRAP and elsewhere

Combined ISOLDE technical know-how:

- neutron-converter and quartz transfer line (contaminant suppression)
- laser ionisation (beam enhancement)

R.N. Wolf et al, Phys. Rev. Lett. 110, 041101 (2013)

Neutron-star composition:

- Test of models
- 82Zn is not in the crust

Decay spectroscopy

- Different detectors to sensitive to emitted:
 - > Alpha particles
 - Beta particles
 - Gamma rays
 - Protons or neutrons
- For example WINDMILL setup:
 - Alpha and gamma detectors
 - Used for studies of beta-delayed fission (i.e. fission following a beta decay)

C foil for implantation

Si detector

for alphas

Beta-delayed fission of mercury-180

WINDMILL setup

- Unexpectedly 180Hg does not fission in two semi-magic 90Zr (Z=40,N=50)
- Fission theories do not predict the results correctly

Coulomb excitation

Nucleon-transfer reactions

Miniball + T-REX setup (Si detector barrel) And/or SPEDE (conversion electrons): gamma detectors and particle identification $\int \frac{d}{\sqrt{r}} \frac{1}{\sqrt{r}} \frac{1$

<u>Typical reactions</u>: one or two-nucleon transfer (d,p), (t,p)

Information:

Observables

- energies of protons (+ E_g)
- angular distributions of protons (+ γ-rays)
- (relative) spectroscopic factors

study single-particle properties of nuclei

= > Similar configurations = large overlap of wave functions = Large probability of transfer reaction 22

(single-particle) level energies spin/parity assignments particle configurations

Octupole deformation and MINIBALL

7 = 50

7=82

N=82

Octupole shape – very rare nuclear shape

- Test ground for nuclear models
- Important in searches for permanent electricdipole moments (EDM) – beyond Standard Model

Method: Coulomb excitation

- Beam accelerated to 2.8 MeV/u
- Excitation of a projectile nucleus by e-m field of the target nuclei

Detection with MINIBALL gamma-array

- Germanium detectors high efficiency gamma detection
- Silicon detectors for particle identification
- L.P. Gaffney et al, Nature 497 (2013) 199

¹⁴⁴Ba

¹⁴⁸Nd

 σ_{CE}

²²⁰Rn

²²⁴Ra

Pear-shape: beyond Standard Model

- radioactive radioactive **Results: Enhanced electric-octupole transitions** beams targets direct measure of octupole correlations ²²⁶Rə (1993) 2000 3000 λuadrupole moment (e fm²) ²²⁴Ra ²²⁰Rn Pear shape shown experimentally in 2500 500 -208Ph radium-224 octupole 2000 vibrational Best candidates for EDM searches (ISOLDE identified: radium-223, 225 000 1500 2013) 1000 Enhanced atomic EDM moment 500 500 Schiff moment enhanced by ~ 3 orders of magnitude in pear-shaped nuclei 0 In radium atoms, additional 208 212 216 220 224 228 232 236 enhancement due to near-degeneracy of atomic states
- Outlook HIE-ISOLDE:
 - Coulomb excitation on odd-mass radium and radon isotopes
 - Searches for permanent EDM in trapped radium isotopes
 - => Looking for physics beyond the Standard Model

moment (e fm²

Octupole

Applications

Use known radiation from not totally exotic radioisotopes

Profit from radionuclides:

- Pure samples of radioisotopes (offline studies)
- High detection efficiency for radiation (online studies)

Techniques:

- Emission Channeling
- PAC (Perturbed Angular Correlations)
- Diffusion
- Photoluminescence

PET isotopes

- PET (positron emission tomography) uses β+ emitting nuclei and their annihilation inside the body in diagnosis and therapy
- Produced at ISOLDE and later investigated together with the creators of the PET technique at the Geneva Hospital

Heavy-ion toxicity

Vibenholt J et al, Inorg. Chem (2012)

Biophysics and Parkinson disease

Ma²⁺

Over 1/3 of all proteins require metal ions to function:

Magnesium

Catalysis in cellular energy transformations

Photosynthesis component of chlorophyll

But they are difficult to study:

"Magnesium in biological chemistry is a Cinderella element: We know its hidden power and personality only indirectly since we are unable to label and follow it in a sensitive manner."

Copper Alzheimer's disease Wilson's disease 3ody response toxicity lethality deficiency Cu dosage \leftarrow \rightarrow excess Brain shrinkage and eterioration occurs rapidl pongiform pathology characteristic of reutzfeldt- lakob

Prion disease

Metals in biology and beta-NMR

- New approach beta-Nuclear Magnetic Resonance
 - Beta-decay of polarized nuclei is anisotropic \geq
 - Resonances observed as change in decay asymmetry \succ
 - \Rightarrow Up to 10¹⁰ more sensitive than conventional NMR
- Proof-of-principle experiment
 - Magnesium-31 beam \geq
 - Polarization with lasers \geq
 - 1st beta-NMR in a liquid
- **Outlook:**
 - Funding from CERN **Knowledge Transfer Fund**
 - First biological studies on \geq Mg and Cu

A. Gottberg, M. Stachura, M. Kowalska, et al, ChemPhysChem 15, 3929 (2014) 29

Soon be continued within MK'EU ERC Starting Grant

COLLAPS setup

Material science

New medical isotopes

After U. Koster, C Müller et al. 2012 J. Nucl. Med. 53, 1951

Summary

- Research topics with radionuclides:
 - Nuclear and atomic physics
 - > Astrophysics
 - Fundamental studies
 - Applications
- Studied properties:
 - > mass, radius, spin, moments, half-life, decay pattern, transition probabilities
- Examples of ISOLDE experimental techniques
 - Laser spectroscopy
 - > Ion traps
 - Decay spectroscopy
 - Coulomb excitation
 - Nucleon-transfer reactions
- Applications
 - Material science
 - Life sciences: bio- and medical

Studies of radioactive nuclides

Properties/observables (for ground states and isomers – long-lived excited states)

Techniques/ devices

To obtain the full picture: need to study several properties and use several techniques

Charge radii of Be isotopes

Halo: nucleus built from a core and at least one neutron/proton with spatial distribution much larger than that of the core

Interaction of the core and halo nucleons not well understood

Combination of techniques:

Charge radii of Hg & Au

odd-A Rn [TRIUMF]

odd-A Ra [Argonne]

odd-A Ra [Groningen]

odd-A Rn:

odd-A Ra:

^{219,221}Rn inferior to ^{223,225}Ra

Next step: ^{223,225}Rn HIE-ISOLDE (CERN)

Next step: ²²⁵Ra directly TSR@HIE-ISOLDE

Fundamental studies with traps

determine beta-neutrino (βv) correlation in β decay of ³⁵Ar with ($\Delta a/a$)_{stat} \leq 0.5 % =>test the Standard Model

 $H_{\beta} = H_{S} + H_{V} + H_{T} + H_{A} + H_{P}$

Current experimental limits: (from nuclear & neutron β decay) $\frac{C_s}{C_V} < 7\%, \frac{C_T}{C_A} < 9\%^1$

e.g: Fermi β decay (0⁺ \rightarrow 0⁺)

$$a \approx 1 - \frac{|C_S|^2 + |C_S'|^2}{|C_V|^2}$$

Simulated ion recoil for different a

WITCH

Transfer reactions on beryllium-11

11Be:

- Halo nucleus
- Cluster structures in neighbours
- N=8 broken in 12Be

CRIS

- Collinear Resonant Ionisation Spectroscopy
- High sensitivity, lower resolution -> perfect for heavy ions

RILIS

COLLAPS – Ne charge radii

Laser spectroscopy

HIE-ISOLDE

Quarter-wave resonators (Nb sputtered)

- SC-linac between 1.2 and 10 MeV/u
- 32 SC QWR (20 @ $\beta_0\text{=}10.3\%$ and 12@ $\beta_0\text{=}6.3\%$)
- Energy fully variable; energy spread and bunch length are tunable. Average synchronous phase fs= -20 deg
- 2.5<A/q<4.5 limited by the room temperature cavity
- 16.02 m length (without matching section)
- No ad-hoc longitudinal matching section (incorporated in the lattice)
- New beam transfer line to the experimental stations

WITCH

Static Electric Dipole Moment implies CP-violation

Schiff Theorem: neutral atomic system of point particles in electric field readjusts itself to give zero E field at all charges.

BUT: finite size and shape of nucleus breaks the symmetry

EDM searches

In units of *e*–*cm*, selected EDM limits are:

Particle	EDM limit	System	SM Prediction	New Physics
е	$1.9 imes 10^{-27}$	²⁰⁵ Tl atom	10 ⁻³⁸	10 ⁻²⁷
μ	$1.1 imes 10^{-19}$	rest frame Ē	10 ⁻³⁵	10 ⁻²²
τ	$3.1 imes 10^{-16}$	$e^+e^- ightarrow au^+ au^-\gamma$	10 ⁻³⁴	10 ⁻²⁰
р	$6.5 imes 10^{-23}$	TIF molecule	10 ⁻³¹	10 ⁻²⁶
n	$2.9 imes 10^{-26}$	UCN	10 ⁻³¹	10 ⁻²⁶
¹⁹⁹ Hg	2.1×10^{-28}	atom cell	10 ⁻³³	10 ⁻²⁸

A non-exhaustive list:

Leptonic	EDMs	Hadronic EDMs		
System	Group	System	Group	
Cs (trapped)	Penn St.	<i>n</i> (UCN)	SNS	
Cs (trapped)	Texas	<i>n</i> (UCN)	ILL	
Cs (fountain)	LBNL	<i>n</i> (UCN)	PSI	
YbF (beam)	Imperial	<i>n</i> (UCN)	Munich	
PbO (cell)	Yale	¹⁹⁹ Hg (cell)	Seattle	
HBr ⁺ (trapped)	JILA	¹²⁹ Xe (liquid)	Princeton	
PbF (trapped)	Oklahoma	²²⁵ Ra (trapped)	Argonne	
GdIG (solid)	Amherst	^{213,225} Ra (trapped)	KVI	
GGG (solid)	Yale/Indiana	²²³ Rn (trapped)	TRIUMF	
muon (ring)	J-PARC	deuteron (ring)	BNL?	

Matter-antimatter

- Sakharov conditions require CP symmetry violation
 This violation is observed in electro-weak interaction, but probably cannot account for matter-antimatter imbalance
 No suideness for CD violation in streng interaction
- No evidence for CP violation in strong interaction
- |d(¹⁹⁹Hg)| < 3.1×10⁻²⁹ e cm (Griffith et al PRL 102 (2009) 101601)
- |d(ThO)| < 8.7×10⁻²⁹ e cm (Baron et al arXiv:1310.7534v2 (2013))
- In many cases provides best test of extensions of the Standard Model
 that violate CP symmetry.

Accounted for by cancellations?

- study of minimal supersymmetric SM (J Ellis)

CP violation in the lepton sector is not known, could also account for matterantimatter difference

30Mg: E0 transition

E0 decay of 30Mg electron spectrometer

Identification of 0+ state at 1789 keV ; small mixing amplitude with spherical ground state => deformed state

30Mg: spherical 0+ground-state, deformed 1st 0+ state (2 neutrons across N=20) => **shape coexistence**

W. Schwerdtfeger et al., Phys. Rev. Lett. 103, 012501 (2009)

Laser spectroscopy and nuclear physics

Laser spectroscopy

Isotope shifts in atomic transitions

(change in mass and size of different isotopes of the same chemical element)

$$\delta v^{A,A'} = (K_{NMS} + K_{SMS}) \times \frac{A' - A}{A'A} + F \times \delta \langle r^2 \rangle^{A,A}$$

Nuclear Magnetic Resonance – NMR

(Zeeman splitting of nuclear levels)

$$\Delta E_{mag} = \left| \boldsymbol{g}_{I} \right| \cdot \boldsymbol{\mu}_{N} \cdot \boldsymbol{B} + \frac{1}{2} \boldsymbol{Q} \cdot \boldsymbol{V}_{zz}$$

B = 0 $B \neq 0$

Beta-detected NMR

Beta particles (e-,e+) can be used as a detection tool, instead of rf absorption (beams down to 1000 ions/s can be studied)

Measured asymmetry:

 $A = \frac{N(0^{\circ}) - N(180^{\circ})}{N(0^{\circ}) + N(180^{\circ})}$

Nuclear Magnetic Resonance – NMR (Zeeman splitting of nuclear levels)

$$\Delta E_{mag} = \left| g_I \right| \cdot \mu_N \cdot B + \frac{1}{2} Q \cdot V_{zz}$$

 $B = 0 \qquad B \neq 0$

Results:

Magnetic and electric moments of nuclei (position of last nucleons, shapes)