
The GPGPU & Many Vector
Core Folly ... is there hope for

HEP?

Software Technology Forum, CERN

Matevž Tadel, UCSD April 27 2016

Wednesday, April 27, 16

Preliminaries
• Why am I speaking here ...

• Since early 2014: Kalman filter based tracking on novel
architectures

• Cornell, Princeton, UCSD; CMS + NSF PIF project

• Multi-threading + SIMD (AVX, KNC); recently porting to CUDA.

• I’m the guy who gets most of the low level fun (e.g., perl scripts that write intrinsics code)

• The master plan was (and mostly still is) to try everything that makes sense.

• In 2008: Parallelization of ALICE Simulation (Geant3, VMC, TGeo)

• This talk is about alternatives to GPGPUs for offline.

• Based on experience from the Tracking project.

Wednesday, April 27, 16

Outline

• Main claims

• Experience / known hardware limitations from the
Kalman tracking project, based on Xeon / KNC

• Would like to learn if GPUs could do better (even theoretically).

• Reducing hardware constraints

• Near future

Wednesday, April 27, 16

Main points
• Chip makers are on a binge making FLOPSy hardware.

• We are not the only ones feeling frustrated.

• There are only few offline algorithms in HEP that can make full use of
SIMD / SIMT

• E.g.: TPC tracking, calo reconstruction, parts of silicon tracking, particle flow
reconstruction (?)

• However: many algorithms can make good use of it!

• Online: latency is all that matters ... best physics per $ ➙ do what you can

• Reconstruction is overtaking simulation in overall computing time!

• We have CPUs with AVX on the floor now (well, for quite a while) ... we should be
focusing on that.

• Deployment of hardware is only half of the story

• Has anybody been following the WLCG saga about multi-core job support?

Wednesday, April 27, 16

Track fitting
• This was our first step

• Initial speedup on MIC: ~30x compared to SMatrix implementation

• x 8: vectorization

• x 2: take into account known 0, 1 elements of matrices

• x 2: manual (auto generated) intrinsics code for matrix multiplication

• icc-16:

• xeon & mic: auto-vectorization improved, manual intrinsics give 2% (xeon), 8% (mic) speedup

• on mic: scalar mode (W=1) uses x87 ... which is twice faster than vector operations

• makes vectorization speedup less appealing :)

• Side note: icc produces 2x faster code than gcc

• that was with gcc-4.8, need to recheck with gcc-5.3

Wednesday, April 27, 16

Between fitting & finding
• Amdahl’s law also applies to vectorization!

•

Text

fitting

finding

Fitting:
x) close to 95%
x) includes repacking of hits
from object to Matriplex
format

Finding:
x) at 75%, can get to 90%
x) slightly better on xeon - out
of order execution

finding on Xeon, AVX

Wednesday, April 27, 16

Track finding
• Note: We are actually writing a new tracking code.

• Most importantly, simplify hit search by using somewhat global coords.

• We’re trying to keep it geometry independent.

• Vector propagation of W tracks is relatively straightforward.

• Auto-vectorized, requires about 40 temporary variables.

• Match N tracks with Mcand hits ... this is hard!

• Need data reformatting to have a track & a hit in the same vector slot.

• Prefetching of hit data in L2 & L1 helps ... but not too much and can be
overdone.

• L1 cache is getting real tight for 512-bit vectors & two threads per core.

• L2 is ok, but one has to be careful with problem partitioning.

Wednesday, April 27, 16

Cache & Data repacking
• Xeon - 2 hw threads, MICs - 4 hw threads per core.

• On MIC, L1 is already tight for 2 threads, sigh.

• Could have separate Inst. and Data caches per two threads?

• Alternatives: 1. Think harder; 2. use narrower vectors; 3. dumb down algorithms.

• And above all: profile, also at full load.

• Could we use hyper threads for data prefetching & reformatting?

• C++/hardware support for programming hyper-threads:

• Prefetching into L2.

• Repacking: need extra 17 cache lines =~ 1.2 kB

• Problem is synchronization if running two threads.

• Need smart interleaving, like giving 2 lambdas.

• We are able to promise that writes do not overlap.

Wednesday, April 27, 16

Avoiding output data races
• Embarrassing parallelism continues to work for us - we can easily avoid write

races and have practically no need for inter-thread communication.

• Well, not in GeantV case - this is a real hard problem.

• Geometry (voxelization), physics ... a lot of incoming data.

• Collecting compatible particles across multiple cores is super costly.

• This stretches L1 and memory system / hierarchy.

• Ideal solution: have the ability to stream data from simulation cores to a special core that
shuffles particles into bins and schedules them for processing.

• Data in flight is not part of memory, i.e., does not have an address.

• Avoid any locking/synchronization and memory coherency.

• Special cores have no need for VPUs ➙ can use that space for input buffers.

• Core interconnects are there ...

• Do the same with output (hits).

• Applies to any data-gather operation, including output serialization!

Wednesday, April 27, 16

Unzipping

• This is the bottleneck in several stages of analysis.

• Could one do SIMD (multi-stream) zip/unzip?

• Especially if streams / baskets share the compression dictionary.

• Why is there no hardware support for data compression?

• Passing compressed data into the core!

• Decompress on the fly ... reduce memory B/W

• Hydrological kernels ➞ claim x3 speedup, x8 energy efficiency

• Fine for single / few variables, probably hard for full deserialization.

Wednesday, April 27, 16

What’s coming our way
• Skylake: AVX-512

• KNC: out of order execution + double L2 size

• Systems coming online ... US ATLAS / CMS encouraged to use them!

Cori, NERSC
Phase II: 9300 KNLs,
single socket, 96 GB RAM

Trinity, LANL & SNL:
Phase II: > 9500 KNLs

Wednesday, April 27, 16

Unlikely partners?
• Game engines have very similar problems as reconstruction.

• I’m not talking about the final rendering part.

• AI, physics + collision detection, heart beat, pre-render passes (culling, z-sorting, attribute sorting)

• Very active discussions in C++ SG14 (low-latency C++: games + nano second trading)

• 2013:

• PlayStation-4 35 M

• Xbox One >10 M

• Both use custom AMD chips.

• AMD does seem to be investing in SIMD / SIMT fusion ➙ APU

• Intel also packs GPUs (“Compute Architecture”) on mobile/desktop CPUs (actually do SSE!)

• Are custom APUs the future of HPC / HTC?

• Select number of cores, cache sizes, SIMD / SIMT functionality, ...

• Cuncurrency SG1: heated discussions about how to tag tasks for execution on
specific “core” types.

Wednesday, April 27, 16

Conclusion

• There is a lot of work to be done!

• That is, real hard work for people who like challenges :)

Wednesday, April 27, 16

