INSTRUMENTATION & DETECTORS for HIGHENERGY PHYSICS

4 751

ELFEN

WHAT IS A PARTICLE DETECTOR ?

An apparatus able to detect the passage of a particle and/or localise it and/or measure its momentum or energy and/or identify its nature and/or measure its time of arrival

04-08 July 2016

WHY DO WE NEED PARTICLE DETECTORS ?

An astronomer uses a telescope A biologist uses a microscope We (a lot of us at least) use a camera to take a snapshot of reality

Particle physicists invent, build and operate detectors to record the products of initial particles interactions:

WHAT ARE WE LOOKING FOR ?

ELEMENTARY PARTICLES and FORCES

PARTICLES

htlp://pag. Lbl.gov

~ 180 Selected Particles

H. D. W , Z, g, e, M, 3, Ve, Vm, Vy, , TC, M, 40(660), g(20), w (782), y' (858), to (380), Qo (380), \$(1020), ha (1170), ba (1235), $\alpha_1(1260), f_2(1270), f_1(1285), \gamma(1295), \pi(1300), \alpha_2(1320),$ 10 (1370), 1, (1420), w (1420), y (1440), a, (1450), g (1450), $f_{0}(1500), f_{2}'(1525), \omega(1650), \omega_{3}(1670), \pi_{2}(1670), \phi(1680),$ 93 (1630), g (1700), fo (1710), TC (1800), \$ (1850), \$ (2010), a4 (2040), \$4 (2050), \$2 (2300), \$2 (2340), KI, K°, K°, K°, K° (892), K. (1270), K. (1400), K. (1410), K. (1430), K. (1430), K. (1680), K, (1770), K" (1780), K, (1820), K" (2045), Dt, D°, D' (2007),° D" (2010)", D. (2420)", D." (2460)", D." (2460)", D.", D.", Ds, (2536)*, Ds, (2573)", B*, B°, B*, Bs, Be, Me (15), J/4(15), Xco (1P), Xca (1P), Xca (1P), W(25), W(3770), W(4040), W(4160), ψ (4415), γ (15), X to (1P), X (1P), X (1P), γ (25), X (2P), X52 (2P), T (35), T (45), T (10860), T (11020), p, n, N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1700), N(1710), N(1720), N(2130), N(2220), N(2250), N(2600), A(1232), A(1600), A(1620), A(1700), A(1905), A(1910), A(1920), A(1930), A(1950), $\Delta(2420), \Lambda, \Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690),$ A (1800), A (1810), A (1820), A (1830), A (1890), A (2100), $\Lambda(2110), \Lambda(2350), \Sigma^{+}, \Sigma^{\circ}, \Sigma^{-}, \Sigma(1385), \Sigma(1660), \Sigma(1670),$ $\Sigma(1750), \Sigma(1775), \Sigma(1915), \Sigma(1940), \Sigma(2030), \Sigma(2250), \Xi^{\circ}, \Xi^{-},$ \equiv (1530), \equiv (1690), \equiv (1820), \equiv (1950), \equiv (2030), Ω , Ω (2250), $\Lambda_{c_1}^{t}, \Lambda_{c_2}^{t}, \Sigma_{c_1}(2455), \Sigma_{c_2}(2520), \Xi_{c_1}^{t}, \Xi_{c_2}^{c_2}, \Xi_{c_1}^{t}, \Xi_{c_2}^{c_2}, \Xi_{c_2}(2645)$ = (2780), = (2815), De, Ab, = b, Eb, tt

There are Many move

+ the ones we have not yet observed

W. Riegler/CERN

KNOWN PARTICLES

HOW CAN A PARTICLE DETECTOR DISTINGUISH THE PARTICLES WE KNOW

MEASURE PROPERTIES of PHYSICS PROCESSES

IDENTIFY THE EXISTENCE OF A NEW PARTICLE

http://pdg. Lbl.gov

~ 180 Selected Particles

H. N. W, Z, g, e, M. 3, Ve, Vm, Vy, TC, M, 40(660), g(20), w (782), y' (258), to (380), Qo (380), \$(1020), ha (1170), ba (1235), $\alpha_1(1260), f_2(1270), f_1(1285), \gamma(1295), \pi(1300), \alpha_2(1320),$ 10 (1370), 1, (1420), w (1420), y (1440), a, (1450), g (1450), $f_{0}(1500), f_{2}'(1525), \omega(1650), \omega_{3}(1670), \pi_{2}(1670), \phi(1680),$ 93 (1630), 9 (1700), fo (1710), TC (1800), \$ (1850), \$ (2010), a4 (2040), f4 (2050), f2 (2300), f2 (2340), K1, K°, KS, KL, K* (892), K, (1270), K, (1400), K* (1410), K' (1430), K' (1430), K* (1680), K2 (1770), K3 (1780), K2 (1820), K4 (2045), Dt, D°, D' (2007), $D^*(2010)^t, D_n(2420)^c, D_n^*(2460)^c, D_2^*(2460)^t, D_s^t, D_{s,1}^{st}$ Ds, (2536)*, Ds, (2573)", B*, B°, B, Bs, Be, ye (15), J/4(15), Xco (1P), Xca (1P), Xca (1P), W(25), W(3770), W(4040), W(4160), ψ (4415), r(15), X to (1P), X to (1P), X to (1P), r(25), X to (2P), X52 (2P), T (35), T (45), T (10860), T (11020), p, n, N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1700), N(1710), $N(1720), N(2130), N(2220), N(2250), N(2600), \Delta(1232), \Delta(1600),$ $\Delta(1620), \Delta(1700), \Delta(1905), \Delta(1910), \Delta(1920), \Delta(1930), \Delta(1950),$ $\Delta(2420), \Lambda, \Lambda(1405), \Lambda(1520), \Lambda(1600), \Lambda(1670), \Lambda(1690),$ Λ (1800), Λ (1810), Λ (1820), Λ (1830), Λ (1890), Λ (2100), $\Lambda(2110), \Lambda(2350), \Sigma^{+}, \Sigma^{\circ}, \Sigma^{-}, \Sigma(1385), \Sigma(1660), \Sigma(1670),$ $\Sigma(1750), \Sigma(1775), \Sigma(1915), \Sigma(1940), \Sigma(2030), \Sigma(2250), \Xi^{\circ}, \Xi^{\circ},$ \equiv (1530), \equiv (1690), \equiv (1820), \equiv (1950), \equiv (2030), Ω^{-} , Ω (2250), $\Lambda_{c_1}^{+}, \Lambda_{c_2}^{+}, \Sigma_{c_1}(2455), \Sigma_{c_2}(2520), \Xi_{c_1}^{+}, \Xi_{c_2}^{\circ}, \Xi_{c_1}^{\circ}, \Xi_{c_2}^{\circ}, \Xi_{c_2}(2645)$ = (2780), = (2815), 12°, 1°, 1°, = 5, = 5, tt

There are Many move

+ the ones we have not yet observed

W. Riegler/CERN

ELEMENTARY PARTICLES MASS

Mass of elementary particles in not predicted by the Standard Model of Particle Physics.

PARTICLES MASSES

p	P_{11}	****	∆ (1232)	P_{33}	****	Σ^+	P_{11}	****	≡ ⁰	P_{11}	****	Λ_c^+	****
n	P_{11}	****	∆(1600)	P ₃₃	***	Σ^0	P ₁₁	****	Ξ-	P_{11}	****	$\Lambda_{c}(2595)^{+}$	***
N(1440)	P_{11}	****	$\Delta(1620)$	S_{31}	****	Σ-	P_{11}	****	$\Xi(1530)$	P_{13}	****	$\Lambda_{c}(2625)^{+}$	***
N(1520)	D_{13}	****	$\Delta(1700)$	D_{33}	****	Σ(1385)	P_{13}	****	$\Xi(1620)$		*	$\Lambda_{c}(2765)^{+}$	*
N(1535)	S_{11}	****	$\Delta(1750)$	P_{31}	*	$\Sigma(1480)$		*	$\Xi(1690)$		***	$\Lambda_{c}(2880)^{+}$	***
N(1650)	S_{11}	****	$\Delta(1900)$	S_{31}	**	$\Sigma(1560)$		**	$\Xi(1820)$	D_{13}	***	$\Lambda_{c}(2940)^{+}$	***
N(1675)	D15	****	$\Delta(1905)$	F ₃₅	****	$\Sigma(1580)$	D_{13}	*	$\Xi(1950)$		***	$\Sigma_{c}(2455)$	****
N(1680)	F ₁₅	****	$\Delta(1910)$	P_{31}	****	$\Sigma(1620)$	S_{11}	**	$\Xi(2030)$		***	$\Sigma_{c}(2520)$	***
N(1700)	D_{13}	***	$\Delta(1920)$	P_{33}	***	$\Sigma(1660)$	P_{11}	***	$\Xi(2120)$		*	$\Sigma_{c}(2800)$	***
N(1710)	P_{11}	***	$\Delta(1930)$	D_{35}	***	$\Sigma(1670)$	D_{13}	****	$\Xi(2250)$		**	\equiv_{c}^{+}	***
N(1720)	P_{13}	****	$\Delta(1940)$	D_{33}	*	$\Sigma(1690)$		**	$\Xi(2370)$		**	Ξ ⁰	***
N(1900)	P_{13}	**	$\Delta(1950)$	F ₃₇	****	$\Sigma(1750)$	S_{11}	***	$\Xi(2500)$		*	$\equiv e^{i+}$	***
N(1990)	F ₁₇	**	$\Delta(2000)$	F ₃₅	**	$\Sigma(1770)$	P_{11}	*				='0	***
N(2000)	F ₁₅	**	$\Delta(2150)$	S_{31}	*	$\Sigma(1775)$	D_{15}	****	Ω_		****	Ξ_(2645)	***
N(2080)	D_{13}	**	$\Delta(2200)$	G37	*	$\Sigma(1840)$	P_{13}	*	$\Omega(2250)^{-}$		***	$\Xi_{c}(2790)$	***
N(2090)	S_{11}	*	$\Delta(2300)$	H_{39}	**	$\Sigma(1880)$	P_{11}	**	$\Omega(2380)$		**	$\Xi_{c}(2815)$	***
N(2100)	P_{11}	*	$\Delta(2350)$	D_{35}	*	$\Sigma(1915)$	F ₁₅	****	Ω(2470) ⁻		**	$\Xi_{c}(2930)$	*
N(2190)	G_{17}	****	$\Delta(2390)$	F ₃₇	*	$\Sigma(1940)$	D_{13}	***				$\Xi_{c}(2980)$	***
N(2200)	D ₁₅	**	$\Delta(2400)$	G_{39}	**	$\Sigma(2000)$	S_{11}	*				$\Xi_{c}(3055)$	**
N(2220)	H_{19}	****	$\Delta(2420)$	$H_{3,11}$	****	$\Sigma(2030)$	F ₁₇	****				$\Xi_{c}(3080)$	***
N(2250)	G_{19}	****	$\Delta(2750)$	I _{3,13}	**	$\Sigma(2070)$	F ₁₅	*				$\Xi_{c}(3123)$	*
N(2600)	$I_{1,11}$	***	$\Delta(2950)$	$K_{3,15}$	**	$\Sigma(2080)$	P_{13}	**				Ω^0_{μ}	***
N(2700)	$K_{1,13}$	**				$\Sigma(2100)$	G_{17}	*				$\Omega_{c}(2770)^{0}$	***
			Λ	P_{01}	****	$\Sigma(2250)$		***					
			A(1405)	S_{01}	****	$\Sigma(2455)$		**				Ξ +	*
			A(1520)	D_{03}	****	Σ(2620)							
			A(1600)	P_{01}	***	$\Sigma(3000)$						Λ ⁰ _b	***
			A(1670)	S_{01}	****	Σ(3170)		•				Σ_b	***
			A(1690)	D_{03}	****							Σ_{b}^{*}	***
			A(1800)	S_{01}	***							$\equiv_{b}^{0} = _{b}^{-}$	***
			A(1810)	P_{01}	***							Ω_b^-	***
			A(1820)	F ₀₅	****							5	
			A(1830)	D_{05}	****								
			A(1890)	P_{03}	****								
			A(2000)	_	*								
			A(2020)	F ₀₇	*								
			A(2100)	G ₀₇	****								
			A(2110)	F ₀₅	***								
			A(2325)	D_{03}	*								
			A(2350)	H ₀₉	***								
			A(2585)		**								
			1						1				

Tables of masses for known particles (here baryons - 3 quarks)

PROPERTIES of PARTICULES

			Scal	e factor/	P
$ au^-$ decay modes	F	Fraction (Γ_i/Γ)	Confide	ence level	(MeV/ <i>c</i>)
Modes with	n on	e charged part	icle		
particle ⁻ \geq 0 neutrals \geq 0 $K^0 \nu_{\tau}$ ("1-prong")		(85.35 ±0.07) %	S=1.3	-
particle ⁻ ≥ 0 neutrals $\geq 0K_L^0 \nu_{\tau}$		(84.71 ±0.08) %	S=1.3	_
$\mu^- \overline{ u}_\mu u_ au$	[g]	(17.41 ± 0.04)) %	S=1.1	885
$\mu^{-}\overline{ u}_{\mu} u_{ au}\gamma$	[e]	(3.6 ± 0.4	$) \times 10^{-3}$		885
$e^-\overline{\nu}_e \nu_{\tau}$	[g]	(17.83 ± 0.04)) %		888
$e^-\overline{\nu}_e \nu_{\tau} \gamma$	[e]	(1.75 ± 0.18) %		888
$h^- \geq 0 {\cal K}^0_L u_ au$		(12.06 ± 0.06)) %	S=1.2	883
$h^- u_{ au}$		(11.53 ± 0.06)) %	S=1.2	883
$\pi^- u_{ au}$	[g]	(10.83 ± 0.06)) %	S=1.2	883
$K^- u_{ au}$	[g]	(7.00 ± 0.10	$) \times 10^{-3}$	S=1.1	820
$h^- \geq 1$ neutrals $ u_{ au}$		(37.10 ± 0.10)) %	S=1.2	-
$h^- \geq 1 \pi^0 u_ au$ (ex. \mathcal{K}^0)		(36.58 ± 0.10)) %	S=1.2	-
$h^- \pi^0 u_{ au}$		(25.95 ± 0.09)) %	S=1.1	878
$\pi^- \pi^0 \nu_{\tau}$	[g]	(25.52 ± 0.09)) %	S=1.1	878
$\pi^-\pi^0$ non- $ ho$ (770) $ u_ au$		(3.0 ± 3.2) × 10 ⁻³		878
${\cal K}^- \pi^0 u_ au$	[g]	(4.29 ± 0.15	$) \times 10^{-3}$		814

Tables of decay modes for known particles (here for lepton T)

LIMITED SIZE DETECTOR

Among these 180 listed particles,

27 have a long enough

such that, for GeV energies, they travel more than one micrometer

Among these 27, 14 have c.t <0.5 mm and leave a very short track in the detector

All	Povhicks with	cs>1,mm @GeV	Level	19
Particle	Mass (ne	V) Life time s	(s) CY	
r TI (I da	140	2 6 10-8	70.	
k (08,80	1.00	2-6.10	7.8 M	
$N^{-}(u\bar{s},\bar{u}\bar{s})$) 454	7.2.70 -	3.7 m	
K° (83, ās)	497	8.9 . 10-11	2.7 cm	
DI (cā, co	1869	1.0.10-12	315 pm	
D° (cū,uč	1 1864	4.1.10-13	123 pm	
$D_{s}^{\dagger}(c\bar{s},\bar{c}s)$	1969	4.9.10-13	147 mm	11 6
BI (wi, iu)	5279	1.7.10-12	502 mm	Decorting
B° (60,03)	5279	1.5 - 10- 12	462 um	Vertion
$B_{s}^{\circ}(s\overline{5},\overline{s}b)$	5370	1.5.10-12	438 um	
$\mathcal{B}_{c}^{\dagger}(c\bar{s},\bar{c}\bar{s})$	~6400	~ 5. 10-13	150 pm	
p (uud)	938.3	> 1033 Y	8	
n (uda)	939.6	885.7 s	2.655.10	⁸ Km
$\Lambda^{\circ}(uAs)$	1115.7	2.6.10-10	7.89 cm	
$\sum^{*}(uus)$	1189.4	8.0.10-11	2.404 cm	
Z (das)	1197.4	1.5.10-10	4.434 cm	
∃°(uss)	1315	2.9.10-10	8.71cm	
E (dss)	1321	1.6.10-10	4.91 cm	
	1000			
<u>(</u> 2 (sss)	16+2	8.2.10	2.461 cm	
Ac (ude)	2285	~ 2.10 .3	60 pm	
Lie (use)	2466	4.4.10	132,m	
E. (des)	2472	~ 1.10-43	29 jum	
_∩c° (ssc)	2638	6.0.10-14	19 mm	
Ab (uas)	5620	1.2.10-12	368,mm	
			W. Riegler	CERN13

THE 13 PARTICLES A DETECTOR MUST BE ABLE TO MEASURE AND IDENTIFY

 $\begin{array}{c} e^{\pm} & m_{e} = 0.511 \, MeV \\ \mu^{\pm} & m_{n} = 105.7 \, \Pi eV \sim 200 \, me \\ \gamma & m_{n} = 0 , \ Q = 0 \end{array} \end{array} \\ \hline EM \\ \pi_{\pi} = 139.6 \, MeV \sim 270 \, me \\ K^{\pm} & m_{\kappa} = 493.7 \, MeV \sim 1000 \, me \\ P^{\pm} & m_{P} = 938.3 \, MeV \sim 2000 \, me \\ \hline M_{\kappa 0} = 4.97.7 \, MeV \quad Q = 0 \\ n & m_{\kappa} = 939.6 \, MeV \quad Q = 0 \end{array} \\ \end{array} \\ \begin{array}{c} EM \\ EM \\ Strong \\ Strong \\ \end{array}$

The Difference in Mass, Charge, Interection is the key to the Identification

UNITS in HEP & International System

Quantity	HEP units	SI Units		
length	1 fm	10 ⁻¹⁵ m		
energy	1 GeV	1.602 · 10⁻¹º J		
mass	1 GeV/c ²	1.78 ⋅ 10 ⁻²⁷ kg		
ħ=h/2	6.588 · 10 ⁻²⁵ GeV s	1.055 ⋅ 10 ⁻³⁴ Js		
С	2.988 · 10 ²³ fm/s	2.988 · 10 ⁸ m/s		
ħc	0.1973 GeV fm	3.162 · 10 ⁻²⁶ Jm		

Natural units ($\hbar = c = 1$)					
mass	1 GeV				
length	1 GeV ⁻¹ = 0.1973 fm				
time	1 GeV⁻¹ = 6.59 ⋅ 10⁻²⁵ s				

HOW to MEASURE PARTICLE PROPERTIES

Particles are characterized by

Mass Momentum Energy Charge [+ Spin, Lifetime ...] [Unit: eV/c² or eV] [Unit: eV/c or eV] [Unit: eV] [Unit: e] $eV = 1.6 \cdot 10^{-19} J$ c = 299 792 458 m/s e = 1.602176487(40) \cdot 10^{-19} C

Relativistic kinematics:

$$E^{2} = \vec{p}^{2}c^{2} + m^{2}c^{4}$$
$$\beta = \frac{v}{c} \qquad \gamma = \frac{1}{\sqrt{1 - \beta^{2}}}$$
$$E = m\gamma c^{2} = mc^{2} + E_{\rm kin}$$

Particle Identification via measurement of e.g. (Ε, p, Q) or (p, β, Q) (p, m, Q) ...

 $\vec{p} = m\gamma \vec{\beta} c$ $\vec{\beta} = rac{\vec{p}c}{E}$

EXAMPLES of INTERACTIONS

RADIATION LENGTH

The radiation length is a "universal" distance, very useful to describe electromagnetic showers (electrons & photons)

 X_0 is the distance after which the incident electron has radiated (1-1/e) 63% of its incident energy, via Bremsstrahlung.

TOTAL ENERGY LOSS by ELECTRONS

μ^{+} in COPPER

PROTON-PROTON INTERACTIONS

DETECTOR at LHC - Challenge

DETECTOR: PRINCIPLE

DETECTORS: TRACKING

MAGNETIC ANALYSIS

MAGNETIC ANALYSIS

 $\frac{d\vec{p}}{dt} = q\vec{\beta} \times \vec{B}$

 $p[\text{GeV}] = 0.3B[\text{T}]\rho[\text{m}]$

Charged particle of momentum p in a magnetic field B

If the field is constant and we neglect the presence of matter, the momentum is constant with time, the trajectory is helical.

What can you say about this event ?

Pixel

Pixel barrel

04-08 July 2016

TRACKING DETECTOR: CMS pixel module

10 µm

TRACKING DETECTOR: ATLAS pixel module

CONNECTION SENSOR-ELECTRONICS

Connection between the silicium sensor and the reluctancies chip readout

Very high density ~15 wires/mm

Connection via ultrasounds of wires of thickness ~20µm

TRACKING DETECTOR: new PIXEL layer in 2014

PILE-UP of COLLISIONS

Ability to separate individual collisions - 40 MHz

TRACKING DETECTOR

Measure charged particles momentum

Uniform magnetic field

High position resolution \longrightarrow high momentum resolution

Close to the beams

- \longrightarrow high particle density
- $\longrightarrow \textbf{small cell size}$

DETECTOR: CALORIMETERS

INTERACTIONS vs INCOMING PARTICLES

EM Electrons CALORIMETERS ARE Photons DESTRUCTIVE Had PARTICLES DO NOT COME OUT of THE CALORIMETER EM ELECTRONS, PHOTONS, Taus **HADRONS** Hadrons ARE ABSORBED by the Had **CALORIMETERS ONLY MUONS and NEUTRINOS** EM **ESCAPE** Jets Had

EXAMPLES of INTERACTIONS

ELECTROMAGNETIC SHOWER

The CAVERN has a FINITE SIZE

CALORIMETERS measure PARTICLE ENERGY

75k channels **ΔE/E ~ 3-5%/√E ⊕ 150 MeV/E ⊕ 0.5%**

CONSTRUCTION of the CMS CALORIMETER

CONSTRUCTION du CALORIMETRE de CMS

DETECTEURS: SPECTROMETRE à MUONS

MUONS

 μ is the brother of the electron with m_µ=200 x me

Electromagnetic interaction: 1/m²

μ interact with matter 40000 times less than electrons

They essentially do not notice the presence of the calorimeter

Detection with the muon spectrometer

AIR CORE TOROID

MUON SPECTROMETER

MUON SPECTROMETER

ATLAS MDT R(tube) =15mm

MUON SPECTROMETER

Specific to ATLAS : Air core Toroïd Minimise matter encounter by muons

WHY ???

рт<100 GeV	δрт/рт ~2%			
p⊤~1 TeV	δρ _T /p ^T ~10%			

MUON CHAMBERS in ATLAS

TOROID + MUON CHAMBERS

DETECTOR MISSING TRANSVERSE ENERGY

ENERGY BALANCE

$$\vec{E}_T^{miss} = -\sum_i^{cells} \vec{E}_T$$

DETECTOR: INTRODUCTION QUIZZ

What is a detector ?

What does a detector measure ?

How is a detector designed ?

Compare a digital camera with the ATLAS detector

Would you join an experiment where the calorimeter is in front of the tracking system ?

CREDIT and BIBLIOGRAPHY

A lot of material in these lectures are from:

Daniel Fournier @ EDIT2011 Marco Delmastro @ ESIPAP 2014 Weiner Raigler @ AEPSHEP2013 Hans Christian Schultz-Coulon's lectures Carsten Niebuhr's lectures [1][2][3] Georg Streinbrueck's lecture Pippa Wells @ EDIT2011 Jérôme Baudot @ ESIPAP2014