

Overview Summer student lectures 2016

Mike Lamont with acknowledgements to Lucio Rossi and Oliver Bruning

LHC: big, cold, high energy

1720 Power converters
> 9000 magnetic elements
7568 Quench detection systems
1088 Beam position monitors
~4000 Beam loss monitors

150 tonnes helium, ~90 tonnes at 1.9 K350 MJ stored beam energy in 20151.2 GJ magnetic energy per sector at 6.5 TeV

Luminosity

Per bunch crossing

Luminosity

$$L = \frac{N_1 N_2 k_b f}{4\rho S_x^* S_y^*} F = \frac{N_1 N_2 k_b f g}{4\rho e_n b^*} F$$

Ν	Number of particles per bunch	
k _b	Number of bunches	• X'
f	Revolution frequency	
σ*	Beam size at interaction point	x
F	Reduction factor due to crossing angle	πε
З	Emittance	
ε _n	Normalized emittance $e_n = bge$	
β*	Beta function at interaction point	c^* b^*c
Round be	eams, beam 1 = beam 2	$S = \sqrt{D e}$

Bunches

(Foreseen) LHC bunch structure - 2016

- 25 ns bunch spacing
- Nominal bunch intensity 1.15 x 10¹¹ protons per bunch

26.7 km 2800 bunches

We've had some problems with the SPS beam dump which is limiting us to 2076 bunches per beam for the moment.

Interaction region

Squeeze in ATLAS

- Lower beta* implies larger beams in the triplet magnets
- Larger beams implies a larger crossing angle
- Aperture concerns dictate caution

Video

Recombination/separation dipoles (D1) and inner triplet left of ATLAS

Crossing angle

work with a crossing angle to avoid parasitic collisions.

Crossing angle

Large crossing angle:

- → reduction of long range beam-beam interactions
- \rightarrow reduction of beam-beam tune spread and resonances
- \rightarrow reduction of the mechanical aperture
- → reduction of luminous region
- → reduction of overlap & instantaneous luminosity

geometric luminosity reduction factor:

$$F = \frac{1}{\sqrt{1 + \Theta^2}}; \quad \Theta = \frac{\theta_c \sigma_z}{2\sigma_x}$$

Pile-up

Process	X-section	Luminosity	Events
	~80 mb	1 x 10 ³⁴ cm ⁻² s ⁻¹	8 x 10 ⁸ s ⁻¹
Inclastic at 6 E To)/		1 x 10 ³⁴ cm ⁻² s ⁻¹ /(k _b f _{rev})	26
meldslic dl 0.5 lev		5 x 10 ³⁴ cm ⁻² s ⁻¹	4 x 10 ⁹ s ⁻¹
		5 x 10 ³⁴ cm ⁻² s ⁻¹ /(k _b f _{rev})	130

HL-LHC - goals

- Prepare machine for operation beyond 2025 and up to ~2035
- Operation scenarios for:
 - total integrated luminosity of 3000 fb⁻¹ in around 10-12 years
 - an integrated luminosity of ~250 fb⁻¹ per year
 - mu \leq 140 (peak luminosity of 5x10³⁴ cm⁻²s⁻¹)

HL-LHC: key 25 ns parameters

Protons per bunch	2.2 x 10 ¹¹
Number of bunches	2750
Normalized emittance	2.5 micron
Beta*	15 cm
Crossing angle	590 microrad
Geometric reduction factor	0.305
Virtual luminosity	2.4 x 10 ³⁵ cm ⁻² s ⁻¹
Levelled luminosity	5 x 10 ³⁴ cm ⁻² s ⁻¹
Levelled <pile-up></pile-up>	140

HL-LHC How?

Lower beta* (~15 cm)

- New inner triplet magnets wide aperture Nb₃Sn
- Large aperture NbTi separator magnets
- Novel optics solutions
- Crossing angle compensation
 - Crab cavities
- Dealing with the regime
 - Collision debris, high radiation
- Beam from injectors
 - High bunch population, low emittance, 25 ns beam

Higher intensity

Operational scenario

- If we could compensate crossing angle perfectly ~2 x10³⁵ cm⁻²s⁻¹
- Even if not still need to artificially reduce luminosity to stay within pile-up limit of experiments - leveling

1. Squeeze harder

	2016	HL-LHC
β*	40 cm	15 cm
Beam size at IP (sigma)	17 um	7 um
β at triplet	~4.5 km	~20 km
Beam size at triplet	1.5 mm	2.6 mm
Crossing angle	370 urad	590 urad

The reduction in beam size buys a factor of 1.6 in luminosity but:

- Bigger beams in inner triplets and so
- Larger crossing angle
- And thus larger aperture in inner triplets is required.

Challenge: build a wide aperture quadrupole

Triplets or low-β quads

- Present LHC triplets: 210 T/m, 70 mm coil aperture
 - 8 T @ coil approaching limit of NbTi
- HL-LHC triplet: 140 T/m, 150 mm coil aperture
 - Around 12 T @ coil
 - Requires Nb₃Sn technology

LHC low-ß quads

US-LARP/CERN collaboration spanning 25 years

- Mid-March 2016, a short prototype of the quadrupole magnet underwent its first testing phase at the Fermilab.
- Prototype is 1.5 m long, whereas the final magnets will be 4.2 or 7.15 m
- During the tests, a peak magnetic field of 12.5 Tesla was measured on the coils, compared to 8 Tesla for the LHC's current quadrupole magnets.

Squeeze

- Going to use quadrupoles both sides of a given IP all the way out to the arc to control the optics during the squeeze.
- Current in the inner triplets doesn't actually change very much during the squeeze – but the beam size does.

New interaction region layout

New triplets are not enough by themselves

- Superconducting separation dipoles (D1)
- Corrector package
- And beyond...

Low beta* optics (ATS)

Small β^* is limited not only by aperture but : optics matching, chromatic effects...

A novel optics scheme was developed to reach un-precedent β^* w/o chromatic limit based on a kind of generalized squeeze involving 50% of the ring

Beam sizes [mm] @ 7 TeV from IR8 to IR2 for typical ATS "pre-squeezed" optics (left) and "telescopic" collision optics (right)

2. Crossing angle compensation Attempt to claw back the very significant reduction in luminosity

from the large crossing angle

Crab Cavity

- Create a oscillating transverse electric field
- Kick head and tail of the bunch in opposite directions
- Serving to mitigate the effect of the crossing angle at the IP

Figure 4. Electric (left) and magnetic (right) field distributions inside the DQWCC.

Crab cavity development

Major R&D program

Now concentrate on two designs in order for test installation in SPS

> Double ¼-wave: coaxial couplers with hook-type antenna

RF Dipole: waveguide or waveguide-coax couplers

RF-Dipole Nb prototype [ODU-SLAC]

Tests in SPS 2018

Serious stuff!

Losses in Stable Beams 2012: 50 ns, 1370 bunches, 1.6e11 ppb

3. DEALING WITH THE REGIME

High bunch intensity, high luminosity, potentially high losses, high radiation

Complete system, Beam 1

S. Redaelli, HB2016, 06/07/2016

HL-LHC collimation upgrade

Dispersion Suppressor collimation

Protecting the dispersion suppressors (DS) from collimation or luminosity debris Off-momentum debris gets swept into cold mass by first main dipoles encounter after the collision point

Replace a 8.3 T Nb-Ti dipole with two **11 T Nb₃Sn dipoles**

- Leaving enough space for a 0.8 m long room temperature collimator

First units needed for IP7 in LS2

Prototyping of cryogenics bypass

Prototyping of the by-pass cryostat for the installation of a warm collimator in the cold dispersion suppressors.

11 T dipole prototypes

Cold tests results

MBHDP101

Courtesy F. Savary

4. Beams from injectors

LIU proton target \rightarrow HL-LHC beam parameters

25 ns	\mathcal{N} (x 10 ¹¹ p/b)	ε (μm)	B _l (ns)
2012	1.2	2.6	1.5
HL-LHC	2.3	2.1	1.7

Injectors must produce 25 ns proton beams with about double intensity and higher brightness

A cascade of improvements is needed across the whole injector chain to reach this target

Malika Meddahi

Main means to achieve the target HL-LHC proton beam parameters

Linac4 in for Linac2	 H⁻ injection into PSB at 160 MeV Expected double brightness for LHC beams out of the PSB
Booster	 Increase energy to 2 GeV New RF system New main power supply
PS	 Injection at 2 GeV Beam production schemes Feedback systems: new wide-band longitudinal feedback; transverse feedback against head-tail and e-cloud instabilities
SPS	 Power upgrade of the main 200 MHz RF system Electron cloud mitigation through a-C coating (baseline) or beam induced scrubbing

Many other options plus a full ion upgrade program

Malika Meddahi

A few other challenges

Very bright beams, very high bunch population, very high beam current

- Beam stability
 - New low impedance collimators
- Beam lifetime & loss spikes
 - Magnet quenches
- Machine protection
 - Failure scenarios local beam impact equipment damage
 - Quench protection
- Machine availability
 - Radiation to electronics (SEUs etc.)...

Powering cold circuits

To avoid radiation to electronics and personnel – move power converters out of the tunnel. **High Temperature Superconducting (HTS) links.**

To summarize

5 x 10³⁴ cm⁻²s⁻¹ and 250 fb⁻¹ per year

- 1. New inner triplet magnets plus new configuration of interaction regions
- Reduce effect of crossing angle main (but not only approach) – crab cavities
- 3. Dealing with extremely challenging regime collimator upgrades s/c links etc.
- 4. Major program of upgrades in injectors

3. For collimation we also need to change the DS in the continuous cryostat:
11T Nb₃Sn dipole

2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector New triplet Nb₃Sn required due to:
 Radiation damage
 Need for more aperture

 More than 1.2 km of LHC
 Plus technical infrastructure (e.g. Cryo and Powering)...

