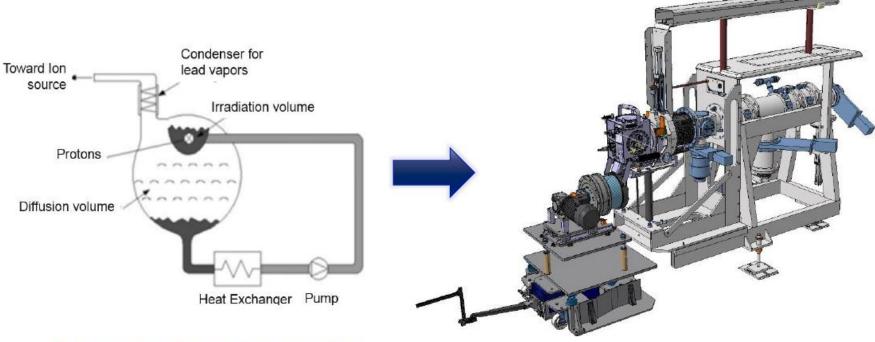

ISOLDE Update

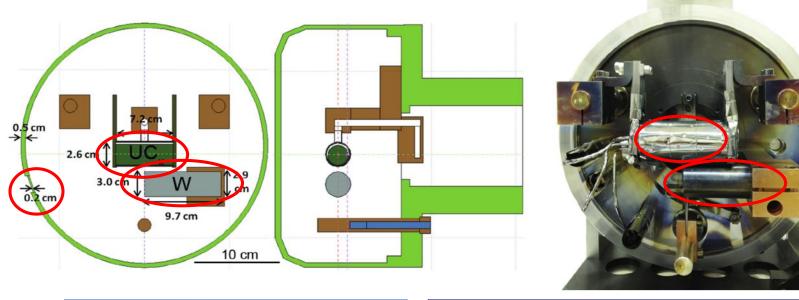
Operations 2016 Target and Ion Source Developments Facility Upgrades Topics of potential collaboration between TRIUMF and CERN

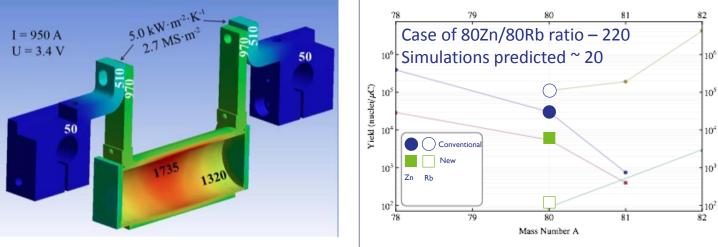
Operations 2016


- ISOLTRAP (mass measurement)
 - ^{59,60,61,62,63}Cr beams produced from UC2-C target + RILIS at HRS
 - Observed incidental Sc and Fe beams in MRToF device
 - Plans to enhance their production using laser ionisation (Fe already done yesterday)
- CRIS (Collinear Resonance Ionization Spectroscopy)
 - ⁶³⁻⁷⁸Cu beams produced from UC2-C target + RILIS at HRS
- Collections
 - ⁷Be produced for nToF
 - Po samples produced for PSI

Target and Ion Source Development Production of new beams

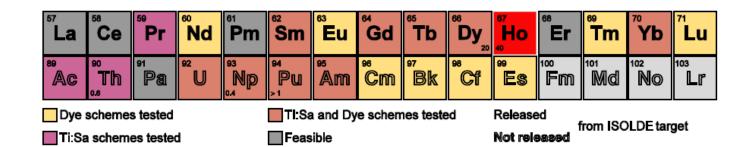
Target and Ion Source Development LIEBE (Liquid Eutectic Lead Bismuth loop target for Eurisol)


 Development of a high power target that allows a higher release of short-lived species (targeted isotopes: ¹⁷⁷Hg (130 ms half life))


Schematic layout proposed during the EURISOL Design Study phase

A 2-parts target: the main loop part and the pump part

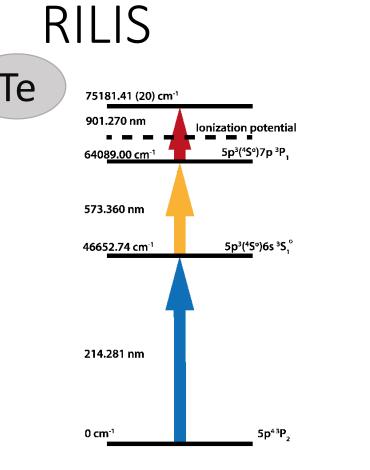
Target and Ion Source Development Convertor prototype testing at ISOLDE

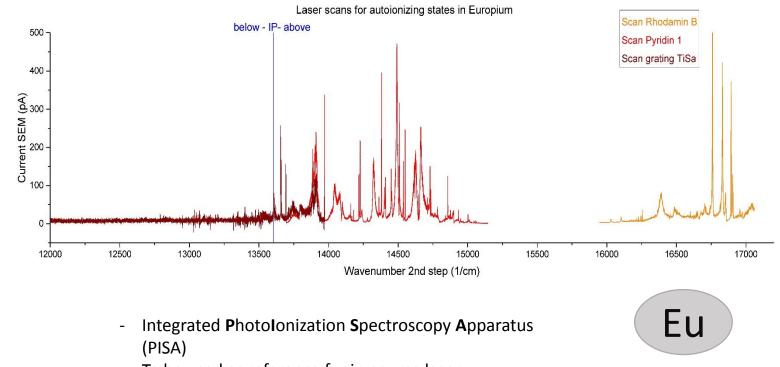

- Power supply limit 1000A
- Limited target operation temperature to 1750°C
 - Standard operation 1950-2100°C

A. Gottberg, T.M. Mendonca, R. Luis, J.P. Ramos, C. Seiffert, S. Cimmino, et al., NIMB 336 (2014) 143–148.

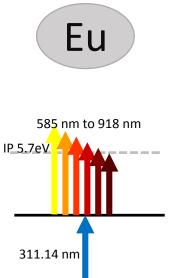
Target and Ion Source Development RILIS – accessible elements

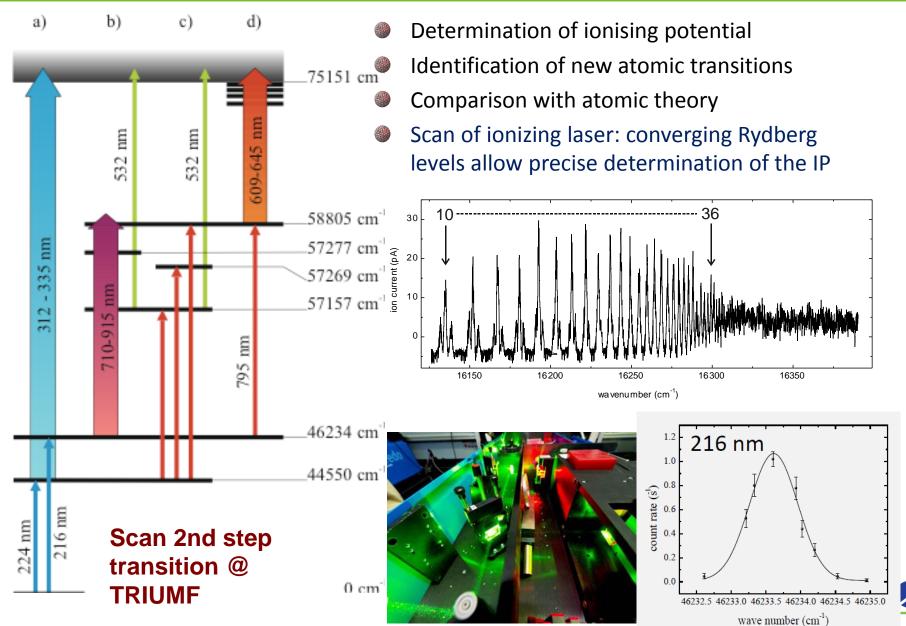
¹ H																	^² He
³ Li	⁴ ³ ³	New Schemes tested at ISOLDE in 2014/15												⁷ N	ຶ໐	۴	¹⁰ Ne
Na	¹² Mg ₁₀						13 AI	14 SI 0.1	15 P	¹⁶ S	¹⁷ CI	¹⁸ Ar					
¹⁹ K	20 Ca 0.45	²¹ Sc ₁₅	22 TI	²³	²⁴ Cr	25 Mn 0.9 19	26 Fe	27 Co > 18 > 4	28 Ni > 2 > 6	29 Cu > 3 > 7	³⁰ Zn ₅	31 Ga ⊳80 21	Ge	³³ As	з Se	³⁵ Br	[™] Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	≉ Zr	41 Nb	42 Mo	₽ ₽	₽ Ru	₽₽ Rh	₽d	47 Ag	**Cd	^₄ "In	⁵⁰ Sn ₂₂	51 Sb 27	Te	53 	ŏ⊀Xe
⁵⁵ Cs	56 Ba 1+, 2+		72 Hif	73 Ta	⁷⁴	75 Re	⁷⁶ Os	77 r	78 Pt	⁷⁹ Au ⊳₃	⁸⁰ Нд ₀,1	81 TI 27	⁸² Pb ₃	⁸³ Bi ₆	⁸⁴ Po ,	⁸⁵ At	[®] Rn
⁸⁷ Fr	₿Ra		104 Rf	105 DD	106 Sg	¹⁰⁷ Bh	¹⁰⁸ HS	109 Mt	110 Ds	nn Rg	112 Cn				116 Uuh		118 Uuo


Target and Ion source development RILIS – new cavity material

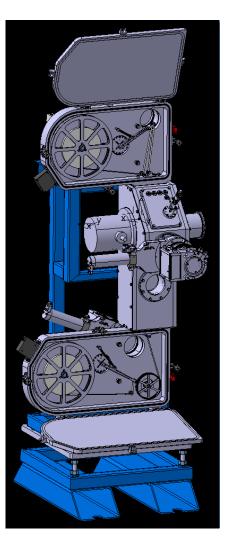

SIGRADUR: a new versatile hot cavity option High resistance No porosity High work function High temperature

Li surface ionisation efficiency – 18% compared to 11% for a standard tungsten ioniser To be tested for Ga efficiency with RILIS

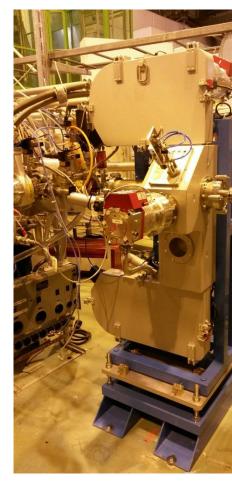

Target and Ion source Developments


The new RILIS ionisation scheme for tellurium ionisation efficiency >18%

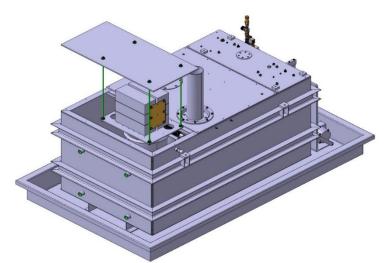
- To be used as <u>reference for in-source laser</u> spectroscopy and ionization scheme development
 - Make use of RILIS set up during shut down
- Enables <u>exploratory scheme development at RILIS</u>, prior to test with dedicated ISOLDE target
- First candidate: Europium (Eu)
- Scan of 2 different dye lasers and new grating TiSa
- Many <u>new autoionizing states</u> discovered
- <u>Two promising schemes</u> with dye or TiSa identified

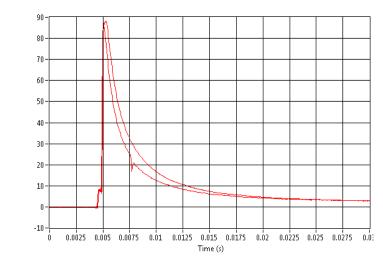


RILIS & TRILIS: Determination of Atomic properties of Astatine



Facility Upgrades Fast Tape Station




- Essential for the testing of target units and characterizing target performance prior to physic's experiment.
- Includes "in-beam" detection, deported and shielded beta detectors, possibility to install gamma detectors
- Tape transport time after sampling ~60ms (compared to 900ms at present).
- Moved into its temporary position at the LA2 beam line in the experimental hall
 - To be installed in its final position during the EYETS period
- Tests with sealed sources followed by tests with radioactive ion beam to be done throughout 2016.
 - Calibration against existing tape station

Facility Upgrades HT Modulation

- Due to localised air ionisation produced by the 1.4GeV proton beam impinging on ISOLDE targets, a modulation of the accelerating voltage is required.
 - Current recovery time after modulation 6-10ms
- Initial tests with new Belkhe switch design 1.5-2.5ms
 - Provides more statistics on isotopes with very short half-lives

Recovery time as a function of protons per pulse 1.5E13 and 3.0E13 ppp

Facility Upgrades HIE-ISOLDE cryomodules

- Second Cryomodule now in place
- Will enable post-acceleration of secondary beams up to 5.5MeV/u
 - Completion of phase 1 of project
- Experiments at HIE-ISOLDE to restart at the end of summer 2016
- Low energy part of REX under commissioning
 - RF for various cavities available as from 6th June 2016

Topics of Potential Collaboration between TRIUMF and CERN

- Target and ion source development
 - Towards a 100kW facility: testing of neutron convertor at TRIUMF with 50kW beam
 - Actinide target material production –nanomaterials or UC synthesis
 - Electron Beam Ion Source, RFQ Cooler and Nier spectrometer development as used at ISOLDE
 - Sharing of laser ionisation schemes; the ionisation scheme for At being a good example
- High Resolution Mass Separation
 - Towards more pure beams: design and testing of magnet designs to reach a mass resolution of 20000
- Super conducting RF cavities
 - Use TRIUMF experience for the design of low-beta cavities for HIE-ISOLDE and review of operational issues
- Nuclear Engineering
 - Target station design and target handling for more compact target units
- Scientific exchange
 - Harmonised presentation and publication of isotope production rates