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Introduction

Introduction (1/2)

• Keeping the TDE graphite core under inert atmosphere (N2) was implemented as a
safety measure:

◦ LHC Design Report: ”... if a massive air entry were to occur in the 6 minutes
following a high intensity dump, the graphite could burn ...”

◦ However, based on our present knowledge burning of graphite under these
conditions seems to be unlikely

◦ Existing literature is however too scarce to reliably conclude on the extent of
graphite damage for LHC dumping conditions

◦ EN/STI will conduct experimental studies to explore in more detail the behavior of
graphite when being exposed to high temperatures in air (for short durations)

• As of now, we recommend to play safe (in the light of recent events):

◦ We suggest to keep the peak temperature in the graphite core below 600◦C if the
N2 pressure falls below 1.05 bar

◦ This presentation derives intensity limits based on this assumption (for protons only,
ions are not an issue despite their large ionizing energy loss before they interact)

◦ The limitations will be revised depending on the outcome of above experiments
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Introduction

Introduction (2/2)

• First intensity limits have already been derived last year (at the time of the first N2

pressure drop in Nov 2015)

◦ See presentation of J. Uythoven LMC #242 (11/11/2015)
◦ Due to the urgency of the situation in Nov 2015, these calculations included several

simplified assumptions (e.g. only a small portion of the sweep was considered)
◦ The present studies systematically investigate different beam energies/emittances

and consider realistic dilution patterns based on measured MKB waveforms

• Accuracy of temperature estimates

◦ We calculate temperature estimates in adiabatic limit, i.e. we neglect any heat
transfer during the beam sweep across the dump front face

– This slightly overestimates the peak temperatures (maybe by 10 %)

◦ We do not have temperature-dependent specific heat curves for the graphite
grades used in the dump

– We use the specific heat curve for another grade, which could give rise to an
over/underestimation of the actual temperature by maybe 10-15 %

– STI plans to measure the specific heat of the grade used
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Introduction

TDE Graphite core
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• LHC dump core consisting of high- and low-density graphite absorbers

• Diameter of 70 cm and a total absorber length of ∼7.6 m

• Low-density graphite absorber made of 2 mm thick, flexible graphite sheets

• Other absorber blocks consist of polycrystalline graphite

• Graphite segments are shrink-fitted into a 12 mm thick stainless steel jacket

• Presence of outgassing groves, also providing passage for the N2 along the core
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Introduction

Low-density flexible graphite sheets
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Assumptions and Simulation Methodology

Simulation Method

• FLUKA simulation of an entire beam dump with thousands of bunches impacting on
TDE is not possible, especially at high beam energies.

• Solution:

1 Simulation of only one bunch and scoring of the energy deposition within the TDE

2 Based on the results for one bunch, calculation of the superimposed energy
deposition from all bunches in a beam dump by means of an external tool

3 Conversion of energy deposition into temperature increase as last step
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Assumptions and Simulation Methodology

Assumed Beam Parameters and Filling Schemes

• Beam Parameter Settings (σ values for 7 TeV case):

Emittance [µm rad] σx [µm] σy [µm] Intensity [ppb] # bunches

Standard 2.6 1330 1138 1.3x1011 2748
BCMS 1.37 965 826 1.3x1011 2448

• Standard Beam train consists of 4 batches á 72 bunches (=288 bunches)

• BCMS Beam train consists of 3 batches á 48 bunches (=144 bunches)

• 900 ns gap between two consecutive trains, 225 ns gap between two batches

• Gaps in the filling schemes have an effect on the peak energy density and hence the
temperature

• Only 3 BCMS batches per train considered as this is the max. number of batches for
which sufficient protection is provided by the transfer line collimators (V. Kain, Chamonix
2014)
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Assumptions and Simulation Methodology

Sweep Patterns for Standard and BCMS beams

• Sweep path generated using measured MKB waveforms for a nominal dump occurring
early 2015

• Sweep patterns derived by M. Fraser

• Regular sweep pattern in blue, sweep dumps with 2H+2V MKB erratic in red

• 2H+2V MKB erratic rather unrealistic, included in the study for demonstration purpose
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Energy Deposition and Temperature Results

450 GeV: Longitudinal Distributions for Full Sweep Dumps
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Energy Deposition and Temperature Results

7 TeV: Longitudinal Distributions for Full Sweep Dumps
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Peak temperature distribution

• Shower maximum observed at larger depth than for 450 GeV beams

• The highest temperature occurs deep inside the low-density graphite absorber segment,
both longitudinally and radially
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Energy Deposition and Temperature Results

Transversal Energy Deposition at Longitudinal Peak
7 TeV Standard Beam Dump (Regular Sweep)

• Peak energy deposition of 2131 J/cm3 (red circle) around the hotspot at a depth of
286 cm from the TDE front face

• Corresponding temperature increase of 1130◦C
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Energy Deposition and Temperature Results

Transversal Energy Deposition at Longitudinal Peak
7 TeV BCMS Beam Dump (Regular Sweep)

• Peak energy deposition of 2037 J/cm3 (red circle) around the hotspot at a depth of
282 cm from the TDE front face

• Corresponding temperature increase of 1090◦C
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Energy Deposition and Temperature Results

Temperature vs. number of dumped bunches
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• Peak temperature increase in the TDE depending on the number of dumped bunches.

• As shown before, dumps at 450 GeV safely remain below 600◦C even for a full machine.
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Energy Deposition and Temperature Results

Dump limitation at 7 TeV
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• Given a temperature constraint of 600◦C beam dumps are limited to a maximum of
about 20 bunches at a beam energy of 6.5 TeV

• Beam dumps suffering from 2H+2V MKB failures don’t impose much stronger
restrictions with respect of the maximal number of bunches allowed
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Summary and Conclusions

Summary & Conclusions

• As of now, we recommend to keep the peak temperature in the graphite core below
600◦C if the N2 pressure falls below 1.05 bar

• This implies that, at 6.5 TeV, the stored intensity shall be limited to max. 20 bunches
with 1.3x1011 ppb

◦ Here we assume that the 20 bunches are located at the most unfavorable position
in the dilution pattern

◦ In principle, one could distribute several short trains (of 12 bunches) around the
rings without exceeding 600◦C, however then one needs to enforce several
constraints on the allowed filling schemes (sufficient gaps between trains)

• For protons at 450 GeV, no restrictions apply (neither for ions at all energies)

• The limitations will be revised depending on the outcome of experimental studies on
graphite planned by EN/STI (tentatively throughout 2016)

◦ The limit of 600◦C is likely conservative even if the dump would be fully exposed to
air

◦ But safety comes first until we have experimental evidence that there is no risk to
go to higher temperatures
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Summary and Conclusions

Backup

• Calculation of a temperature increase based on the obtained distribution of the energy
deposition

• Important: Taking into account the temperature dependency of the specific heat of
graphite
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