

Beam-based alignment & Loss maps

- Results
- **Proposed Physics Positions and Limits**

Next steps:

- Complete Loss Maps
- Intensity qualification

XRP-

Patch § Panel 5

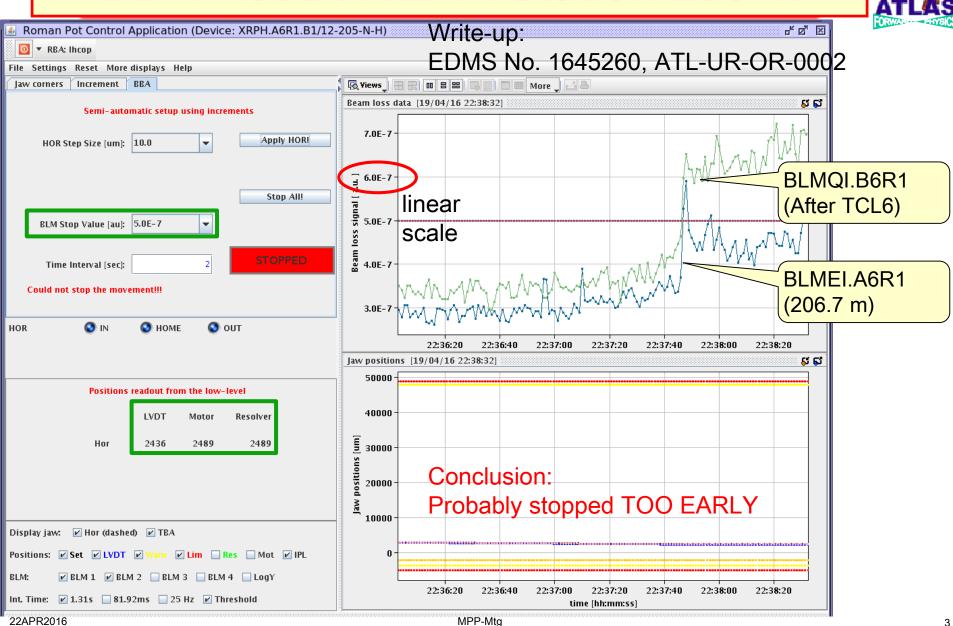
XRP-

217 m

Summary AFP BBA Results

Number of sigmas:

$$\begin{array}{ll} \textbf{-at TCP:} & n_{\sigma, \text{TCP}} = (L-R)/2\sigma_{\text{beam}, \text{Nominal}, \text{TCP}} \\ \textbf{-at pot:} & n_{\sigma, \text{Pot}} = (n_{\sigma, \text{TCP}, \text{before}} + n_{\sigma, \text{TCP}, \text{after}})/2 \end{array}$$

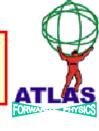

• Predicted beam center: $B = Left_{RP} - n_{\sigma,TCP}\sigma_{RP}$

Time	Element		<i>Left</i> Jaw	LVDT	<i>Right</i> Jaw	σ _{beam} (Nom)	n_{σ}	B (Beam Center)	$B + 20\sigma$
(eLOG - LHC-OP)			[mm]	[mm]	[mm]	[mm]		[mm]	[mm]
19/04/2016 21:22	TCP.C6L7.B1		0.955		-1.935	0.280	5.16		
19/04/2016 22:06	XRPH.B6R1.B1	(FAR)	0.909	0.876	N/A	0.108	5.07	0.362	2.522
	TCP.C6L7.B1		0.900		-1.885	0.280	4.97		
	TCP.C6L7.B1		0.900		-1.885	0.280	4.97		
19/04/2016 22:37	XRPH.A6R1.B1	(NEAR)	2.489	2.436	N/A	0.202	4.92	1.495	5.535
	TCP.C6L7.B1		0.865		-1.860	0.280	4.87		

Proposed Physics Insertion Depths and Inner Limits:

		Inner F	Physics	recalculate in terms of #σ from TCT setting					
Element		posi	ition	Inner Wa	rning Limit	Inner Dump Limit			
		Motor	LVDT	Motor	LVDT	Motor	LVDT		
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]		
XRPH.B6R1.B1	(FAR)	2.522	2.489	2.322	2.289	2.222	2.189		
XRPH.A6R1.B1	(NEAR)	5.535	5.482	5.335	5.282	5.235	5.182		

BBA Result NEAR Station 205 m



Next Steps:

- Complete Loss Maps:
 - betatron maps done (physics only);
 - off-momentum & dump must be done ... Other modes?
 - -When?
 - can we re-align the AFP NEAR pot? (takes 30')
- Qualification as function of increasing n_b in the machine and for a certain optics
 - standard #protons/bunch, standard β* → high μ
 - in steps of increasing n_b: 3 fills: 1 fill w/o insertion, 1 fill with insertion in after ~2 hrs, 1 fill (4-6 hrs) with continuous insertion
 - —if qualified at a certain n_b, then qualified for other filling schemes ≤n_b
 - intensity ramp-up starts soon …

Backup

Beam-Based Alignment

(See TOTEM EDMS 1525164 v. 0.2, July 2015), AFP Write-up: EDMS No. 1645260, ATL-UR-OR-0002

- Start: Monday Tuesday 18-19 April
 - -BYPASS key is OFF (USA15), OVERRIDE key must be ON (ACR)
- Note Beam conditions:
 - -e.g.: E=6.5 TeV, standard optics, $β^*$ =40cm, normalized emittance $ε_n$ =2.6 μm rad
 - $-\sigma_H$ at 205 m and 217 m for normalized emittance ϵ_h = 3.5 µm rad
 - $-\sigma_{TCP,H}$ for normalized emittance $\varepsilon_n = 3.5 \,\mu\text{m} \cdot \text{rad}$ for the TCP.B6L7.B1 (?)
- Note filling scheme; per bunch: bucket#, N_p, ε_n, colliding?
 - -e.g.: Single_76_1_1_1_2cNem5hdPilots_LossMaps
- Move FOP in to tough/define the beam
 - Note jaw positions
- Move RRs in to touch/see the beam (monitored by BLMs)
 - Note insertion depth (Motor, Resolver, LVDT), BLM rates, AFP rates

BBA Result FAR Station 217 m

Next Step: AFP Qualification

- ATLAS
- Qualification must be done as function of increasing n_b in the machine and for a certain optics
 - standard #protons/bunch, standard β* → high µ
 - in steps of increasing n_b: 3 fills: 1 fill w/o insertion, 1 fill with insertion in last 2 hrs, 1 fill (4-6 hrs) with continuous insertion
 - —if qualified at a certain n_b, then qualified for other filling schemes ≤n_b
 - intensity ramp-up starts soon …
- Qualification runs give us high-µ stand-alone data
 - for the study of the beam environment
 - as function of n_b
 - − possibly also low-μ~0.1 physics data?
 - Special filling schemes or beam separation at ATLAS?
- To keep ALFA integrated dose increase ≤10%:
 - $-n_{b}$ ≤500
 - ATLAS wants AFP qualification at least to n_b=500