

Gas breakdown investigation and mitigation in complex geometries

F. Avino, D. Bommottet, B. Gaffinet, A. Howling, P. Martens, and I. Furno

MeVArc - 21.03.2017

Together

ahead. RUAG

Outline

• Introduction

- Gas breakdown in complex geometry
- Breakdown mitigation techniques: grounded limiting discs
 - Experiments
 - Simulations
- Conclusions

Towards high-voltage satellite systems

From current bus voltages in the range **28-100 V**, evaluation of interest in using higher voltages, **up to 300-600 V**, is under way.

Advantages:

- Required for new generations of ion and Hall effect thrusters.
- Improved power efficiency
- **Cost reduction** (up to 30%)
- Mass savings (up to 50%)

This implies a much higher **risk of electrical breakdown** at the solar panel level, or **in the slip ring assembly** (SRA).

Standard satellite slip ring design

Slip rings allow power transmission from the solar panels to the satellite, via gold-plated brushes slipping on gold-plated rings.

Breakdown in a slip ring

Diffuse corona

Localized arc

Slip ring mockup

Slip ring assembly mockup

SWISS PLASMA

CENTER

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Real slip ring assembly

Experimental setup

Breakdown curve of a slip ring in Air

"Robust Electrical Transfer System" safe zone

OUR GOAL?

Improve the slip ring safe zone between 10⁻³ – 100 mbar

Outline

- Introduction
- Gas breakdown in complex geometry
- Breakdown mitigation techniques: grounded limiting discs
 - Experiments
 - Simulations
- Conclusions

$$V_B = \frac{Bpd}{\ln(Apd) - \ln\left(\ln\left(1 + \frac{1}{\gamma}\right)\right)}$$

A, B = empirical coefficients

 γ = secondary emission coefficient

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Paschen's law in complex geometries

Short/Long-path breakdown curve

Short-path breakdown curve

V_{HV}

Long-path breakdown curve

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Chamber equivalent to slip-ring housing

CENTER

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Gas breakdown in complex geometry

Increasing the distance between electrodes does not necessarily increase the breakdown voltage. It depends on the pressure!

Outline

- Introduction
- Gas breakdown in complex geometry
- Breakdown mitigation techniques: grounded limiting discs
 - Experiments
 - Simulations
- Conclusions

How to block long-path breakdown

Grounded limiting discs mockup

ı

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

Safe zone is improved by increasing "h"

ÉCOLE POLYTECHNIQUE Fédérale de Lausanne

HV-EPSA improved safe zone

h = 10 [mm]

Satellite slip ring **safe zone** can be **improved** in terms of pressure by almost **2 orders of magnitude**

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Outline

- Introduction
- Gas breakdown in complex geometry
- Breakdown mitigation techniques: grounded limiting discs
 - Experiments
 - Simulations
- Conclusions

COMSOL simulations

Electric field spatial distribution

COMSOL fluid simulations

Physics model developed during the RETS project:

Experiment

Simulation-Experiment comparison

COMSOL simulations qualitatively reproduce our experimental results The model is not predictive because Townsend's coefficients are poorly defined

COMSOL

FÉDÉRALE DE LAUSANNE

Conclusions

- 1. Investigated gas breakdown in complex geometry, confirming the role of the surrounding vacuum chamber / slip ring housing
- 2. Tested grounded limiting discs (pressure improvement):
 - Low-pressure (long-path) breakdown has been inhibited, improving the safe zone in terms of pressure by almost 2 orders of magnitude, up to 2x10⁻¹ mbar
 - Experimental results qualitatively confirmed by COMSOL fluid simulations

Outlook (1)

Verify our results with a breadboard developed by RUAG, reproducing the satellite slip ring geometry: sequence of rings with progressively increasing size

Grounded discs

ΗV

Outlook (2)

Tested floating and passively biased limiting discs.

