

Dark and Breakdown Currents Studies with RF and In-SEM Field Emission Studies

M. Jacewicz, J. Ögren, R. Ruber and V. Ziemann FREIA Laboratory, UU and H. Jafri, K. Leifer Applied Materials Sciences, UU

Outline

- Dark and breakdown currents at XBox
 - XBox2
 - Instrumentations
 - Measurements
 - BD position
 - Longitudinal
 - Transversal
 - Energy spectra
- In-SEM experiments
 - Setup
 - Scientific program
 - Recent results
- Summary and Outlook

Xbox 2 @ CERN

CLIC ACS tests require:

- → 40-45 MW power
- → pulse length ≤ 250 ns Conditioning process speed related to number of pulses:
- → high rep rate ≥ 50 Hz

XBox2

Solid state modulator
(Scandinova) +
a single 50 MW klystron +
pulse compressor

B. Woolley

Uppsala/CLIC X-band Spectrometer (UCXS)

general-purpose system for detection and measurements of dark and breakdown currents during structure conditioning

Screen (100x50x0.5 mm YAG:Ce) linear actuator (fully retractable)
30 degrees angle w.r.t. the beam axis
2M pixel, 50fps camera with focuser

Energy resolution with dipole magnet

Maximum electron energy <20MeV Rel. energy spread (single slit) 10% - 25% Full energy coverage with magnetic field scan

Collimator (5 mm tungsten plate)

linear actuator (fully retractable), place for two patterns, presently: **pin-hole** 0.5mm and **slit** 10x0.5mm

Instrumentation at XBox2

All diagnostics information available for the breakdown events is combined with images from the camera (including images from before and after BD)

50 Hz operation

Example of collected signals – BD events

Example of images after the slit

Often rich structure of the reflected signal

From amplitude spectrum we conclude that the energy is lost

→ breakdown is "feeding" from the RF power

For the same events we see more features on the screen

BD position

The time and phase difference can give us information about position of the BD site

BD detected when:

- 1) Drop in transmitted power due to plasma formation
- 2) Power reflected back

<u>Difference in time between the transmitted</u> <u>power falling and the reflected power</u> <u>increasing to find the BD cell location. *)</u>

The phase of the reflected signal is used to pinpoint cell location.

Static information (single value), while BD is a dynamic process Can we do better?

*)There are other methods that use RF signal timing to extract BD position.

Longitudinal discharge dynamics

Field reflections can be seen as reflection on a mismatched load in the structure

In a simple model we interpret the mismatch as plasma growth

Combining phase and amplitude information from Incoming and Reflected waves we can get relation between position of the wave and the relative impedance

Peak separation in agreement with cell length of 8.3 mm

This supports the theory of breakdown migrations during the RF pulse

Information from the images

Breakdown transverse position – SLIT

75 ns pulses

Deconvolution with slit transfer function

Single events - recorded images and reconstructed source positions

Single events (animated preview)

Breakdown transverse position – PINHOLE 200 ns pulses

Deconvolution with slit transfer function

Single events - recorded images and reconstructed source positions

Qualitatively more features in data – longer pulse, more time to develop new breakdown

Breakdown transverse position – PINHOLE 200 ns pulses

Combined image from 199 events

Asymmetry and excess events in vertical direction

Breakdown transverse position – PINHOLE 200 ns pulses

Combined image from 199 events

Asymmetry and excess events in vertical direction

Due to special type of structure under test?

Energy spectra from BD events

Electrons with well defined energies

maximum in agreement with the given power/gradient in the structure

Next step: combining energy information with other signals and compare with simulation

Dark current

2000

Dark current:

- precursor of RF breakdown, input to many models→can we predict when BD approaches?
- Information about structure hardening process
- Causes RF power loss, radiation, possible backgrounds

Preliminary

20 pulses + average

Position [m]

V V

Dark current

DC scan with power (done at the end of conditioning during ~ 1h)

Preliminary

@ 21 MW inc. power

@ 26 MW inc. power

@ 30.5 MW inc. power

- No indication of single emitting spot inside the cavity
 - Isotropic transverse distribution
 - Broad energy spectrum continuum from electrons in dark current example here from 50 consecutive pulses (1 second)

Next step: comparison with other detectors i.e. Cherenkov fiber detectors, Faraday cup to look at which structure parameters affect the dark current production

In-SEM Setup

Cu sample W tip, radius of curvature 5 µm. nm precision Piezo-motors

Environmental SEM
Field emitting gun, 10-30 kV
Vacuum ~7×10⁻⁵ mBar

Keithley 6517a Electrometer for measuring FE currents

- up to 1 kV
- range from sub-pA to mA
- 50 Hz sample rate

In recent experiments gap distance to 700 nm

Surface search procedure (done 2 times just left and right to the area-of-interest): Low voltage, approach surface in steps (2 nm) while measuring current until threshold breech

Delays due to repairs of ESEM

Activity restarted earlier this year with the following scientific program:

- Marking an area in ESEM (for easy recognition)
- Move sample to HR-SEM for surface microscopy of the area
- 3. Move back to ESEM for FE experiments
- Move sample back to HR-SEM for postexperiment surface microscopy

Areas are marked in ESEM before initial surface analysis

Here: 150 x 150 µm ; 5µm depth 9 areas

- Marking an area in ESEM (for easy recognition)
- Move sample to HR-SEM for surface microscopy of the area
- 3. Move back to ESEM for FE experiments
- Move sample back to HR-SEM for postexperiment surface microscopy

High-resolution SEM Zeiss LEO 1550 FEG

- Marking an area in ESEM (for easy recognition)
- Move sample to HR-SEM for surface microscopy of the area
- 3. Move back to ESEM for FE experiments
- Move sample back to HR-SEM for postexperiment surface microscopy

- Marking an area in ESEM (for easy recognition)
- Move sample to HR-SEM for surface microscopy of the area
- 3. Move back to ESEM for FE experiments
- Move sample back to HR-SEM for postexperiment surface microscopy

After FN

- Marking an area in ESEM (for easy recognition)
- Move sample to HR-SEM for surface microscopy of the area
- Move back to ESEM for FE experiments
- Move sample back to HR-SEM for postexperiment surface microscopy Site 28

Before FN

Results of surface scan

• • • •

Scan pattern ● ● ●

• • • •

• • • •

Before

Results of surface scan

• • • •

Scan pattern ● ● ●

• • • •

• • • •

Before

After

Results of surface scan

• • • •

Scan pattern • •

• • • •

• • • •

• • • •

'Photoshop' enchancement

Before

After

"Spot" area - before and after

I-V curves

I-V curves

Fitting of β parameter

× ROI

---y=ax+b

0.015

$$\beta = 17.6$$

$$\beta = 75.5$$

Fitting of β parameter

Outlook

Xbox experiments:

- More BD and DC data from Xbox:
 - Correlate BD RF signals with energy spectra
 - Study dark current behavior (trends and before/after breakdowns)

In-SEM experiments:

- Correlate surface features to FE-maps
- Conditioning in the field-emission regime (e.g. repeating scan in the same spot)
- EDX scan directly after
- Quantify surface changes with XPS, AFM
- Better (faster) current measurements during scans

Cryo-DC setup – cryocooler, down to 4 0 K, DC system with large electrodes, K contract with CERN

- •Field emission and BDR as a function of temperature.
- Benchmarking for theoretical models
- Connection between high-gradient normal and

Acknowledgement

Many thanks to Ben Woolley and

RF group at CERN for the efforts in constructing and running the XBox

Fitting of β parameter

Fitting of β parameter

F-N equation

Fowler-Nordheim eq:

$$I = A_e \frac{1.54 \times 10^6 \beta^2 F^2}{\phi} e^{10.41 \phi^{-1/2}}$$

$$\times e^{-6.53 \times 10^3 \phi^{3/2} / \beta F}$$

$$= aF^2 e^{-b/F}$$

$$\ln\left(\frac{I}{F^2}\right) = \ln(a) - \frac{b}{F}$$

Field enhancement β can be determined from the slope b:

$$\beta = \frac{6.53 \times 10^3 \phi^{3/2}}{b}$$
$$F_{loc} = \beta F$$

