Dark and Breakdown Currents Studies with RF and In-SEM Field Emission Studies

M. Jacewicz, J. Ögren, R. Ruber and V. Ziemann
FREIA Laboratory, UU
and
H. Jafri, K. Leifer
Applied Materials Sciences, UU
Outline

• Dark and breakdown currents at XBox
 • XBox2
 • Instrumentations
 • Measurements
 • BD position
 • Longitudinal
 • Transversal
 • Energy spectra
 • In-SEM experiments
 • Setup
 • Scientific program
 • Recent results
• Summary and Outlook
CLIC ACS tests require:
- 40-45 MW power
- pulse length ≤ 250 ns
Conditioning process speed related to number of pulses:
- high rep rate ≥ 50 Hz

XBox2
Solid state modulator (Scandinova) +
a single 50 MW klystron +
pulse compressor
Uppsala/CLIC X-band Spectrometer (UCXS)
general-purpose system for detection and measurements of
dark and breakdown currents during structure conditioning

Collimator (5 mm tungsten plate)
linear actuator (fully retractable), place for two patterns,
presently: pin-hole 0.5mm and slit 10x0.5mm

Collimator Chamber
Dipole Magnet
Screen Chamber
Accelerating Structure
Faraday Cup

Screen (100x50x0.5 mm YAG:Ce)
linear actuator (fully retractable)
30 degrees angle w.r.t. the beam axis
2M pixel, 50fps camera with focuser

Energy resolution with dipole magnet
Maximum electron energy <20MeV
Rel. energy spread (single slit) 10% - 25%
Full energy coverage with magnetic field scan
Instrumentation at XBox2

All diagnostics information available for the breakdown events is combined with images from the camera (including images from before and after BD)

50 Hz operation
Example of collected signals – BD events

Often rich structure of the reflected signal

From amplitude spectrum we conclude that the energy is lost → breakdown is “feeding” from the RF power

For the same events we see more features on the screen
BD position

The time and phase difference can give us information about position of the BD site.

BD detected when:

1) Drop in transmitted power due to plasma formation
2) Power reflected back

Difference in time between the transmitted power falling and the reflected power increasing to find the BD cell location. *)

The phase of the reflected signal is used to pinpoint cell location.

Static information (single value), while BD is a dynamic process

Can we do better?

*)There are other methods that use RF signal timing to extract BD position.
Longitudinal discharge dynamics

Field reflections can be seen as reflection on a mismatched load in the structure

→ In a simple model we interpret the mismatch as plasma growth

→ Combining phase and amplitude information from Incoming and Reflected waves we can get relation between position of the wave and the relative impedance

Peak separation in agreement with cell length of 8.3 mm

This supports the theory of breakdown migrations during the RF pulse
Information from the images
Breakdown transverse position – SLIT
75 ns pulses
Deconvolution with slit transfer function

Single events - recorded images and reconstructed source positions

Single events
(animated preview)
Breakdown transverse position – PINHOLE
200 ns pulses

Deconvolution with slit transfer function

Single events - recorded images and reconstructed source positions

Single events (animated preview)

Qualitatively more features in data – longer pulse, more time to develop new breakdown
Breakdown transverse position – PINHOLE
200 ns pulses

Combined image from 199 events

Asymmetry and excess events in vertical direction
Breakdown transverse position – PINHOLE
200 ns pulses

Combined image from 199 events

Asymmetry and excess events in vertical direction

Due to special type of structure under test?
Energy spectra from BD events

Electrons with well defined energies → maximum in agreement with the given power/gradient in the structure

Next step: combining energy information with other signals and compare with simulation
Dark current:

- precursor of RF breakdown, input to many models → can we predict when BD approaches?
- Information about structure hardening process
- Causes RF power loss, radiation, possible backgrounds

Preliminary:

20 pulses + average
Dark current

- No indication of single emitting spot inside the cavity
 - Isotropic transverse distribution
 - Broad energy spectrum – continuum from electrons in dark current
 example here from 50 consecutive pulses (1 second)

Next step: comparison with other detectors i.e. Cherenkov fiber detectors, Faraday cup to look at which structure parameters affect the dark current production
In-SEM Setup

Environmental SEM
Field emitting gun, 10-30 kV
Vacuum ~7×10^{-5} mBar

Keithley 6517a Electrometer for measuring FE currents
- up to 1 kV
- range from sub-pA to mA
- 50 Hz sample rate

In recent experiments gap distance to 700 nm

Surface search procedure (done 2 times just left and right to the area-of-interest) :
Low voltage, approach surface in steps (2 nm) while measuring current until threshold breech
Scientific program

Delays due to repairs of ESEM

Activity restarted earlier this year with the following scientific program:

1. Marking an area in ESEM (for easy recognition)
2. Move sample to HR-SEM for surface microscopy of the area
3. Move back to ESEM for FE experiments
4. Move sample back to HR-SEM for post-experiment surface microscopy

Areas are marked in ESEM before initial surface analysis

Here:
150 x 150 µm ; 5µm depth
9 areas
Scientific program

1. Marking an area in ESEM (for easy recognition)
2. Move sample to HR-SEM for surface microscopy of the area
3. Move back to ESEM for FE experiments
4. Move sample back to HR-SEM for post-experiment surface microscopy
Scientific program

1. Marking an area in ESEM (for easy recognition)
2. Move sample to HR-SEM for surface microscopy of the area
3. Move back to ESEM for FE experiments
4. Move sample back to HR-SEM for post-experiment surface microscopy
1. Marking an area in ESEM (for easy recognition)
2. Move sample to HR-SEM for surface microscopy of the area
3. Move back to ESEM for FE experiments
4. Move sample back to HR-SEM for post-experiment surface microscopy
1. Marking an area in ESEM (for easy recognition)
2. Move sample to HR-SEM for surface microscopy of the area
3. Move back to ESEM for FE experiments
4. Move sample back to HR-SEM for post-experiment surface microscopy
Results of surface scan

Scan pattern

Before

10 µm
EHT = 6.00 kV
WD = 2.9 mm
Signal A = InLens
Mag = 3.50 K X
High Resolution 19 Feb 2017
Probe = 209 pA
Results of surface scan

Scan pattern

Before

After
Results of surface scan

Scan pattern

'Photoshop' enhancement

Before

After
“Spot” area - before and after
I-V curves

4. $X = -98801. Y = 11900. Z = 4716498$
I-V curves

5

16
Fitting of β parameter

1. $\beta = 15.5$

2. $\beta = 17.6$

3. $\beta = 19.6$

4. $\beta = 75.5$
Fitting of β parameter

$\beta = 30.2$

$\beta = 38.0$

$\beta = 38.8$

$\beta = 37.5$
Outlook

Xbox experiments:
- More BD and DC data from Xbox:
 - Correlate BD RF signals with energy spectra
 - Study dark current behavior (trends and before/after breakdowns)

In-SEM experiments:
- Correlate surface features to FE-maps
- Conditioning in the field-emission regime (e.g. repeating scan in the same spot)
- EDX scan directly after
- Quantify surface changes with XPS, AFM
- Better (faster) current measurements during scans

Cryo-DC setup – cryocooler, down to 4 °K, DC system with large electrodes, K contract with CERN
- Field emission and BDR as a function of temperature.
- Benchmarking for theoretical models
- Connection between high-gradient normal and superconducting fields
Acknowledgement

Many thanks to Ben Woolley and RF group at CERN for the efforts in constructing and running the XBox
Fitting of \(\beta \) parameter

\(\beta = 21.3 \)

\(\beta = 29.6 \)

\(\beta = 27.2 \)

\(\beta = 33.2 \)
Fitting of β parameter

13
$\beta = 20.9$

14
$\beta = 13.9$

15
$\beta = 21.1$

16
$\beta = 22.9$
F-N equation

• Fowler-Nordheim eq:

\[
I = A_e \frac{1.54 \times 10^6 \beta^2 F^2}{\phi} e^{10.41 \phi^{-1/2}}
\]
\[
\times e^{-6.53 \times 10^3 \phi^{3/2} / \beta F}
\]
\[
= a F^2 e^{-b/F}
\]

\[
\ln \left(\frac{I}{F^2} \right) = \ln(a) - \frac{b}{F}
\]

Field enhancement \(\beta \) can be determined from the slope \(b \):

\[
\beta = \frac{6.53 \times 10^3 \phi^{3/2}}{b}
\]

\[
F_{loc} = \beta F
\]