HV BREAKDOWN in VACUUM

B.I.R.D. model

Breakdown Induced by Rupture of Dielectric layer

This is a three-step process

E. Spada

MevArc 2017 Jerusalem , Israel

Fowler-Nordheim

(ii) Fro. 1.

$$k_1 = \frac{a}{\Phi}$$

Φ

Electron Emission in Intense Electric Fields.

By R. H. FOWLER, F.R.S., and Dr. L. NORDHEIM. (Received March 31, 1928.)

$$a = \frac{e^3}{8\pi h} = 1.54 \cdot 10^{-6} \frac{A \, eV}{V^2}$$

$$J = k_1 E_0^2 e^{-\frac{k_2}{E_0}}$$

$$k_2 = b\Phi^{\frac{3}{2}}$$
 $b = \frac{4}{3e}\sqrt{\frac{8\pi^2 m}{h^2}} = 6.82 \cdot 10^9 \frac{V}{m(eV)^{\frac{3}{2}}}$

-*--~

Fowler-Nordheim

$$= k_{1}E_{0}^{2}e^{-\frac{k_{2}}{E_{0}}}$$

$$k_{1} = \frac{a}{\Phi}$$

$$a = \frac{e^{3}}{8\pi h} = 1.54 \cdot 10^{-6}\frac{A \ eV}{V^{2}}$$

$$J = k_{1}E_{0}^{2}e^{-\frac{k_{2}}{E_{0}}}$$

$$k_{2} = b\Phi^{\frac{3}{2}}$$

$$b = \frac{4}{3e}\sqrt{\frac{8\pi^{2}m}{h^{2}}} = 6.82 \cdot 10^{9}\frac{V}{m(eV)^{\frac{3}{2}}}$$

Local field-enhancement factor β

$$E_0 \to \beta E_0 \qquad \qquad I = Ak_1 (\beta E_0)^2 e^{-\frac{k_2}{\beta E_0}}$$

 $\beta \approx 10^2 \div 10^3$ $A \approx 10^{-16} \div 10^{-12} m^2$

Fowler-Nordheim

Fowler-Nordheim

Fowler-Nordheim

$$\beta = 24$$

Fowler-Nordheim

h = 1178.42m

 $\lambda = 61.79$

 $\beta = 1000$

O RFX

ormazione Innovazione

Fowler-Nordheim

Fowler-Nordheim + geometrical amplification

$$E_0 \to \beta E_0 \qquad \qquad I = A k_1 (\beta E_0)^{-\frac{k_2}{\beta E_0}}$$

h(mm)	β	A(m ²)
0.50	46	4.0E-17
0.75	52	1.2E-16
1.00	58	1.9E-16
1.25	62	1.9E-16

F. Furuta et al. / Nuclear Instruments and Methods in Physics Research A 538 (2005) 33-44

k₁ (A/V²)

k₂ (V/m)

3.31E-07

6.85E+10

7.45E+08

Fowler-Nordheim different amplification mechanisms +

$$I = Ak_{1}E_{0}^{2}e^{-\frac{k_{2}}{E_{0}}} \qquad k_{1} = \frac{a}{\Phi} \qquad k_{2} = b\Phi^{\frac{3}{2}}$$

$$k_{1} \rightarrow f_{1}(V)k_{1} \qquad \Phi \rightarrow \frac{\Phi}{f_{2}(V)} \qquad I = Ak_{1}f_{1}(V)f_{2}(V)E_{0}^{2}e^{-\frac{k_{2}}{f_{2}(V)E_{0}}}$$

$$f_{2}(V) = 1 \qquad \lim_{V \rightarrow 0} f_{1}(V) = 1$$

$$f_{1}(V) = 1 + \alpha V^{\gamma} \qquad \underbrace{\frac{\gamma}{7.4} \qquad \alpha(k \vee \gamma)}_{7.4 \qquad 7.2E-12} \qquad A = 5.20 \text{ mm}^{2}$$

100 120 140

2.0E-10 0.0E+00 0 20 40 60 80 CONSORZIO RFX Ricerca Formazione Innovazione

Fowler-Nordheim law

- Fits well all experimental data (for given β and A)
- Too high β -value and (often) unreliable emitting surfaces
- Dependence of β and A from the electrode gap

Fowler-Nordheim-like law

- Different amplification mechanism must be considered
- k_1 and k_2 differ from F.N. constants

- Breakdown is usually interrupted by externally circuitry
- Breakdown changes the microscopic surfaces
- Breakdown Voltage is a function of distance

TOTAL VOLTAGE EFFECT $V_{BD} \sim h^{\alpha}$

Micro-Current (BURSTS)

High Voltage Holding

CURRENT-CONDITIONING

Sphere-Plane configuration – gap=30mm

E. Spada

Micro-Current (BURSTS)

High Voltage Holding

CURRENT-CONDITIONING (cleaned electrodes)

Sphere-Plane configuration – gap=30mm

E. Spada

Micro-Current (BURSTS)

High Voltage Holding

CURRENT-CONDITIONING (cleaned electrodes)

Sphere-Plane configuration – gap=30mm

High Voltage Holding

CURRENT-CONDITIONING

- Involves Current and Pressure Peaks
- Depends on the surface treatment

CLUMP MODEL (Detachment of material)

Journal of Applied Physics 23, 518 (1952) The Initiation of Electrical Breakdown in Vacuum Lawrence Cranberg II. PROPOSED HYPOTHESIS AND SUPPORTING DATA

A hypothesis is proposed herein, the implications of which are briefly elaborated, and a summary of pertinent evidence is presented. The hypothesis is that the initiation of breakdown is due to detachment by electrostatic repulsion of a clump of material loosely adhering to one electrode, but in electrical contact with it;

High Voltage Holding

CURRENT-CONDITIONING

- Involves current and Pressure Peaks
- Depends on the surface treatment

CLUMP MODEL (Detachment of material)

- It seems to be a good answer to experimental observation
- It also gives a good answer to the Total Voltage Effect of Breakdown Phenomena

CLUMP MODEL TAKES INTO ACCOUNT THE ENERGY GAINED BY CHARGE PARTICLES THROUGH THE GAP

A new Model needed

- 1. Dark current seems to be a quantum-tunneling-effect, qualitatively described by Fowler-Nordheim law
- 2. Current (and pressure) random bursts are due to detachment of clumps from electrode surfaces
- **3. Breakdown** could be thought as a particular intense burst that starts an avalanche-like

In the Fowler-Nordheim, Cramberg-Slivkov frameworks, the main unsolved problems are

- 1. β and A unrealistic experimental values and their dependence on the gap.
- 2. Continuous presence of clumps

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 = Vacuum \ electric \ Field$ $E = Electric \ Field \ inside \ the \ dielectric \ layer$

$$E_0 = \frac{\sigma_0^+ + \sigma_0^- - \sigma_p^+ + \sigma_p^-}{2\varepsilon_0}$$
$$E = \frac{\sigma_0^+ + \sigma_0^- - \sigma_p^+ - \sigma_p^-}{2\varepsilon_0}$$

Charge conservation:

$$\sigma_0^+ + \sigma_p^+ = \sigma_0^- + \sigma_p^-$$
$$\sigma_p^+ = \sigma_p^-$$

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 = Vacuum \ electric \ Field$ $E = Electric \ Field \ inside \ the \ dielectric \ layer$

$$\sigma' = \sigma_0^- - \sigma_e$$

$$E_0 = \frac{\sigma_0^+ + \sigma_0^- - \sigma_p^+ + \sigma'}{2\varepsilon_0}$$
$$E = \frac{\sigma_0^+ + \sigma_0^- - \sigma_p^+ - \sigma'}{2\varepsilon_0}$$

Charge conservation:

$$\sigma_0^+ + \sigma_p^+ = \sigma_0^- + \sigma'$$
$$\sigma_p^+ = \sigma_p^-$$

E. Spada

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 = Vacuum \ electric \ Field$ $E = Electric \ Field \ inside \ the \ dielectric \ layer$

E. Spada

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 = Vacuum \ electric \ Field$ $E = Electric \ Field \ inside \ the \ dielectric \ layer$

E. Spada

$$\sigma_{p} = \epsilon_{0} \chi E$$

$$\epsilon_{r} = 1 + \chi$$

$$\sigma_{e} = \epsilon_{r} \epsilon_{0} E - \epsilon_{0} E_{0}$$

$$\epsilon_{r} \epsilon_{0} \frac{dE}{dt} = \epsilon_{0} \frac{dE_{0}}{dt} + J_{e}$$

This equation has to be coupled with

$$RI = V_0 - h_0 E_0 - hE$$

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 = Vacuum \ electric \ Field$ $E = Electric \ Field \ inside \ the \ dielectric \ layer$

$$\begin{cases} \varepsilon_0 \frac{dE_0}{dt} = \frac{V_0 - h_0 E_0 - hE}{RS} - J_e \\ \varepsilon_0 \varepsilon_r \frac{dE}{dt} = \frac{V_0 - h_0 E_0 - hE}{RS} \end{cases}$$

A model for J_e is needed.

It depends on

- charge density $\sigma' = \epsilon_0 (E_0 E)$
- average electric field \overline{E} at surface

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 = Vacuum \ electric \ Field$ $E = Electric \ Field \ inside \ the \ dielectric \ layer$

$$\begin{aligned} \varepsilon_0 \frac{dE_0}{dt} &= \frac{V_0 - h_0 E_0 - hE}{RS} - J_e \\ \varepsilon_0 \varepsilon_r \frac{dE}{dt} &= \frac{V_0 - h_0 E_0 - hE}{RS} \end{aligned}$$

A model for J_e is needed.

$$J_e \sim (E_0 - E)(\bar{E} - E_d) \qquad \bar{E} = \frac{E_0 + E}{2}$$
$$J_e = k(E_0 - E)\left(\frac{E_0 + E}{2} - E_d\right) \qquad k = 0 \quad \text{for} \quad \bar{E} < E_d$$

(Breakdown Induced by Rupture of Dielectric layer)

 $E_0 =$ Vacuum electric Field E = Electric Field inside the dielectric layer

$$J_e = k(E_0 - E)\left(\frac{E_0 + E}{2} - E_d\right)$$

$$E(0) = \frac{E_0(0)}{\varepsilon_r}$$

F.N.-like current

$$J_e(0) = k_1 E_0^2 \left(1 - \frac{k_2}{E_0} \right) \approx k_1 E_0^2 e^{-\frac{k_2}{E_0}}$$

(Breakdown Induced by Rupture of Dielectric layer)

 E_0 = Vacuum electric Field E = Electric Field inside the dielectric layer

NUMERICAL SOLUTIONS

Rupture Time: Time needed for a burst to happen is given by:

$$\tau = \frac{\varepsilon_r \varepsilon_0}{2k} \frac{1}{E_0 - E_{diel}} \ln \frac{(\varepsilon_r - 1)E_0}{(\varepsilon_r + 1)E_0 - 2\varepsilon_r E_{diel}}$$

$$\frac{2\varepsilon_r}{\varepsilon_r + 1} E_{diel} < E_0 \le \varepsilon_r E_{diel}$$

$$E_0 = \frac{\beta V}{h_0} \qquad V_{\text{max}} = \varepsilon_r E_d h_0 \qquad \beta_{\text{sup}} = \frac{V_{\text{max}}}{V} \qquad \beta_{\text{inf}} = \frac{2}{\varepsilon_r + 1} \beta_{\text{sup}}$$

$$\tau(\beta) = \left(\frac{\varepsilon_0 h}{2k}\right) \frac{\varepsilon_r^2}{V(\varepsilon_r \beta - \beta_{\sup})} \ln \frac{(\varepsilon_r - 1)\beta}{(\varepsilon_r + 1)(\beta - \beta_{\inf})}$$

$$\beta_{\inf} < \beta \le \beta_{\sup}$$

Rupture Time: Time needed for a burst to happen is given by:

$$\tau = \frac{\varepsilon_r \varepsilon_0}{2k} \frac{1}{E_0 - E_{diel}} \ln \frac{(\varepsilon_r - 1)E_0}{(\varepsilon_r + 1)E_0 - 2\varepsilon_r E_{diel}}$$

$$\frac{2\varepsilon_r}{\varepsilon_r + 1} E_{diel} < E_0 \le \varepsilon_r E_{diel}$$

$$\tau(\beta) = \left(\frac{\varepsilon_0 h}{2k}\right) \frac{\varepsilon_r^2}{V(\varepsilon_r \beta - \beta_{sup})} \ln \frac{(\varepsilon_r - 1)\beta}{(\varepsilon_r + 1)(\beta - \beta_{inf})}$$

$$\beta_{\inf} < \beta \le \beta_{\sup}$$

Each voltage V explores a given range of β values

CONSORZIO Ricerca Formazione Inno

How can you verify BIRD model?

Overlapping consecutive ranges \implies Delay Time τ_D

$$\tau_D = \frac{\varepsilon_0 \varepsilon_r (\varepsilon_r + 1)}{2kE_d} \frac{1}{2\varepsilon_r x - (\varepsilon_r + 1)} \ln \frac{(\varepsilon_r - 1)x}{(\varepsilon_r + 1)(x - 1)}$$

$$x = \frac{V_B}{V_A} \qquad \qquad 1 < x < \frac{\varepsilon_r + 1}{2}$$

342

IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 46, NO. 2, FEBRUARY 1999

Impact of Time Dependent Dielectric Breakdown and Stress-Induced Leakage Current on the Reliability of High Dielectric Constant (Ba, Sr)TiO₃ Thin-Film Capacitors for Gbit-Scale DRAM's

> Shintaro Yamamichi, Akiko Yamamichi, Donggun Park, Tsu-Jae King, *Member, IEEE*, and Chenming Hu, *Fellow, IEEE*

Fig. 2. Leakage current versus time at high stress voltage for 50-nm BST films. Hard breakdown is observed for each voltage.

Qualitatively reproduced by (modified) B.I.R.D. model

Thank you for the attention