

A generalized method for calculating electron emission and thermal evolution

of metallic nanotips

A. Kyritsakis, M. Veske, V. Zadin and F. Djurabekova

MeVarc 2017 Jerusalem 20.03.2017

Motivation

- It is established that electron emission plays an important role in the initiation of vacuum arcs.
- However the exact mechanism that leads from intense emission to plasma initiation is still unclear
- Fundamental questions:
 - How do we go from field emission to plasma?
 - > PIC simulations assume supply of neutral atoms. What is their source?
- Need for simulations that take into account more phenomena:
 - Electron emission from sharp tips
 - Joule and Nottingham heating
 - Field-induced stress

Electron emission: problems and challenges

• Problem I: T-F Emission

Thermionic and Field emission cannot be always separated. General Thermal-Field (GTF) theory is needed (especially in the case of hightemperature melting nanotips.)

• Problem II: Sharp nano-tips

Sharp emitters have curved potential. The classical Shottky-Nordheim (SN) barrier, based on planar geometry and linear potential cannot describe them. The emission might be overestimated by orders of magnitude

Title:/home/fw/Dropbox/GTF_paper/NewFo Creator:MATLAB, The MathWorks, Inc. Vers CreationDate:10/09/2015 14:27:41 LanguageLevel:2

Heating processes

Nottingham heating

Electrons leaving from the surface cause either heating or cooling, depending on the conditions

Joule Heating

Current running through the emitter causes Joule heating. In standard metallic tips conditions, Nottingham heating is dominant. **However** this might change when tips reach **high temperatures beyond melting point**.

Electron emission computational tool requirements

- Field emission calculations are much more complicated than applying simple equations.
- Need for a general computational tool for electron emission that:
 - Calculates emitted current density and Nottingham heating power
 - ➤ Is applicable to all regimes (thermal, field, intermediate)
 - > Takes into account the curvature of the emitters
 - Costs affordable computational time
 - ➤ Is versatile and generally applicable to various emission calculations
- Development of a new tool named GETELEC.
 - !!Download it from https://github.com/AndKyr/GETELEC

What can GETELEC do?

- Take as input the work function φ , temperature T and electrostatic data as:
 - Either already calculated electrostatic potential distribution $\Phi(x)$
 - Or the parameters (F,R,γ) of a simple electrostatic model
- Find the regime (thermal, field, intermediate, blunt, sharp)
- Calculate the current density J and the Nottingham heating power $\boldsymbol{P}_{_{\rm N}}$
- Automatically analyse experimental I-V data and extract:
 - Enhancement factor β
 - Radius of curvature R

GETELEC Results

• GETELEC calculations for various regimes and comparison to previous theories:

Title:../eps/figure_J.eps Creator:matplotlib version 1.3.1, http:/ CreationDate:Thu Oct 27 15:10:49 2016 Title:../eps/figure_PN.eps
Creator:matplotlib version 1.3.1, http:/
CreationDate:Wed Sep 7 17:56:32 2016

 Current and Nottingham heat are overestimated by several orders of magnitude by the standard GTF or FN theory

GETELEC Results II: Experimental I-V data

- Fitting data from various experimental groups
- Extracted parameters in good agreement with

Set	φ(eV)	β	R(nm)
1	4.05	0.017/nm	10.08
2	4.5	$1.007\beta_{\text{exp}}$	6.87
3	4.35	0.065/nm	16.22
4	4.5	68.6	2.96

Integrating GETELEC into multi-physics simulation tools

- The power of GETELEC is that it is general, versatile and computationally efficient
- It can be easily integrated with other simulation tools
- We combined it with our multi-physics codes under development into a complete simulation tool that combines various processes:
 - Molecular Dynamics (MD): Parcas
 - ElectroDynamics (ED): Helmod or Femocs
 - Electron Emission (EE): GETELEC
 - Heat Evolution (HE): Helmod or Femocs

Integrated Multi-physics simulations

Results: Temperature

- Test on a simple cylindrical tip with R=1.5nm, h=21nm and applied field = 1.25GV/m
- Two modes for comparison on a:
 - Mode A: Full calculation with GETELEC, including both Nottingham and Joule heating components
 - > **Mode B:** Simple Classical F-N equation, including only Joule heating

Title:../eps/figure_heats.eps Creator:matplotlib version 1.3.1, http:/ CreationDate:Tue Sep 6 14:43:22 2016 Title:../eps/figure_temps.eps
Creator:matplotlib version 1.3.1, http:/
CreationDate:Tue Sep 6 14:43:24 2016

A bigger tip

- Experiments have shown enhancement factors of the order of β ~20-50
- Assuming tips of the size that can produce an enhancement factor of β ~20: h=61nm, R=4nm
- Emitters with this enhancement easily reach melting temperature at the top for an applied field of about 0.43GV/m
- To simulate in a plausible computational time, we assume a smaller system, but apply higher field to get the same local, and higher bottom temperature 600K

Creator:matplotlib version 1.3.1, http:/ CreationDate:Thu Mar 16 20:37:14 2017

Positive feedback and evaporation

If the applied field is enough to melt the top, the tip enters in a positive feedback loop:

- The field-induced stress make it pointier and the current increases
- The current increases the temperature
- The temperature increases the thermal and electric resistivity and makes the tip more "flexible", tending to grow higher and pointier
- Eventually it will reach temperatures as high as 3000K and start evaporating

Including the space charge

$$E_{appl} = 1.2GV/m$$

- Beyond a point the electron emission enters the space-charge limited regime.
- We took it into account with the simple analytical 1-D approximation.
- The space charge does not let the local field and the emitted current reach too high levels.
- However as the temperature rises, the resistivity of the material rises a lot and the Joule heating leads it to very high temperatures
- The result does not change qualitatively but the whole process becomes slower

Running at constant temperatures

$$E_{appl} = 1.2GV/m$$

$$T_{top} = 1600K$$

- We ran at constant temperature distributions, to investigate under what conditions the tips enter this positive feedback loop
- With constant temperature the shape is kept much smoother as the tip does not reach boiling temperatures
- A large cluster with total charge of ~20e is evaporating in the end
- We found that a temperature of at least ~1300K is required to see a deformation in MD timescale
- We found that a minimum local field of about ~8GV/m is required to pull the structures upwards and not let them melt down

Future plans

- Run more extensive simulations to see what are the exact conditions that lead to tip "explosion"
- Include space charge effects with better models
- Improve the tools and run various geometries and fields
- Investigate the size and the charge of the evaporated clusters
- Simulate the possibility that the evaporated clusters get more charge due to the electron beam.
- Simulate the bombardment of the anode side with the charged clusters, and the resulting possible sputtering.

Thank you!!!!