¢

i
The Harvey M. Krueger FEIT'I”Y Center U‘I7W]-|1:|. M3V I gIIINT
|~ for Nanoscience and Nanotechnology THE HEBREW UNIVERSITY OF JERUSALEM

BD nucleation as a critical transition In
dislocation population

Yinon Ashkenazy

Amit Weiss, Ayelet Yashar, Inna Popov, Eli Engelberg
Itay Nachshon, Michael Assaf

Racah Institute of Physics,
Hebrew University, Jerusalem, Israel

CERN CLIC/CTF3

Walter Wuensch, Sergio Calatroni, Tomoko Muranaka,
laroslava profatilova, Robin Rajamaki,
Ana Teresa Perez Fontenla, Enrique Rodriguez Castro ,

-)*. .




What nucleates a BD?

High E » nucleation » Pro’rrusions?» Cu plasma breakdown -
Local effect? (arc formation)

Well established since 70's

j~ But.... Missing a nucleation mechanism



Post BD - Scattered ca IC Spots




Spot melting

* lon melting of thin (<0.1um)
layer. Melt expelled by
discharge pressure.
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BD to sub BD




Crater

Uniform Dislocation Distribution

2mm to the side
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Up to now - Plasticity and BD

Localized plastic deformation at BD spot (Post BD)
Uniform Dislocation distribution at the top layer of the electr

« DC - RF similarity - not a skin-effect controlled process

* Previously (Flyura) — Maximal field correlates with crystalline
phase

* Yesterday (Jay) - Correlation between alloy structure and

 Monday (Walter) - Conditioning as a function of number of
pulses and not BD events.

* No observable pre-BD signature, but sub BD events do exist

All consistent with conditioning by a surface hardening mechanism.

Suggesting that BD nucleation — related to surface plastic

activity
j“leading to localized critical increase in field emission current.

» A.Descoeudres, CLIC-Note P
875, 1 (2010).




features

Previously observed in fatigued
surfaces.

Significant sub-surface PSB
leading to surface features.

Stochastic response at

sub-yield stresses. s
Easily observed via SEM AN ille?:iii:rffi(:?nzf

Dislocations activity at sub-yield stresses .«
leads to significant surface modifications .
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Dislocation mediated — self organized criticality

Dislocation interactions are known to
demonstrate critical behavior in slip planes
even at nm scale.

Criticality driven by interaction between Plasticity of Micrometer-Scale
moving dislocations within the slip plane and Single Crystals in Compression
With the surfaces Michael D. Uchic,! Paul A. Shade,?

and Dennis M. Dimiduk’
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Critical plastic response leading to BD

- We suggest a similar critical process which is initiated by dislocations
reaching the surface.

« These may lead to local protrusion, oxide modifications and more.
 Criticality due to interaction between dislocations.

« Plastic response is critical with no significant pre-BD activity
(no roughening of the surface)

« Time scale for surface evolution ~ nano-seconds
*  “"Memory" through dislocation pileups

* TIncreased BDR with pulse length
(2d order effects - such as interactions between dislocation systems)

Hope to achieve:
Critical experimental scenarios,
predictions of observable features (microscopy)

Possible outcomes - conditioning schemes, surface modifications,
understand statistics...

iy




Master equations

* Gain-loss Markovian process
P=rp. +r.p.-(r+r)p

n-1"n-1 n+l” ntl n

« Mobile dislocations multiplication

o Activate FR type sources
o Release sessile dislocations at pile-ups

25Kk CY _Eq-Qo
pr= G,Zb (p+c)o’e” BT

« Mobile dislocations depletion

oCollision: obstacles, other moving dislocations

500
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Parametrization

 The model contains various competing mechanisms which can not
be readily estimated.

We use Cu known parameters + Two main observables used:
» Experimental BD rates: 10" [bpp/m]

o Estimating the number of active regions per m :

(l) (Ni;is)'(Siris) __ 100-2m-2.35(mm)-1(mm)

= 5 & —
dRactiveregions (1072mm)?

o Since the pulses are of 230 nsec we get :

= 107

m

230
O T(BD)per area unit — dtp/(P(bpp/m)/N) = % s 107(

107

sec

)

zone

Rare event (per active cell)

 Field dependency of the breakdown rate (estimated as E3Y) .
Fitting a localized (10%E) exponent : n = log; 4 ( o) ) = 30

7(1.1E)




Results
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Successfully reproduce apparent Strong multiplication dependence on T,
power law dependence leads to a significant shift in fields
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Signs of criticality

Adiabatically moving between quasi-
stationary PDF:
Change in pdf moments while ramping field

-> [dentify threshold

At specific conditions, probe time
dependencies of the QS pdf:
|dentify large fluctuations time dependency

-> jdentify time constants "
-> mechanism

dP(p)/dp




Early warning signals?

» DC and RF indications of pre-breakdown increase in
dark current variance
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Field dependent fluctuations

« Increase in FN fluctuations with field is consistent with
increase in surface related plastic activity

« Time scale of fluctuations - indicative to the dynamic timescale.
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Dark current distribution

Current Histogram for Split and Un-Split States

« Dark currents are expected
to have a Gaussian
distribution.

* High frequency (GHz) data
sets demonstrate “splitting”
to two Gaussians. e .

* ‘life time” of ~10-50 nsec .
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ldentifying pre-BD dislocations activity?

Dislocation avalanches were identified using AE
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High voltage acoustic emission system

Itay Nachshon

System designed For:
o High voltage
oVacuum
oAcoustic

1.9.2015 I. Nachshon,
Y. Ashkenazy



Modelling and validation

Model for plastic
deformation under
high fields

Microscopy of

Acoustic emission
features post BD

Dark current |dentifying pre-BD
measurements features




Summary

« BD and sub BD events leads to liquid cathodic spot - Not preceded by
observable features or significant changes in dislocation network.

« Distinct dislocation structures in Cu exposed to high E.

BD nucleation through mobile dislocations interaction -
leading to critical sub yield surface effect:

o Instantaneous + Only remains are sessile networks

Mean field naive model - (simulation + analytic)
Validation:

o Rates + exponents fitting experiments.
o Fluctuations in dark current - early warning signals
o Acoustic emission - unique to dislocations - under development
Applications:
o “external” efficient conditioning.
o BD prediction.
Future plans:
Verify Field - Network link
AE - measurements + model.
« Extend theory - time, 2"d order



