

Study of vacuum RF Breakdown in strong magnetic field

Alexey Kochemirovskiy
The University of Chicago/Fermilab

Outline

Statement of the problem

Model explaining deterioration of gradient in strong B field

Modular cavity program

Experimental results

Analysis

Motivation: Muon cooling channel

It was experimentally shown that presence of multi-Tesla magnetic increases the breakdown rate

[Safe operating gradient = maximum gradient: breakdown rate < 10⁻⁵]

Model explaining deterioration of gradient in strong B fields

- Electron field emission from surface imperfections
- B field focuses dark current into beamlets
- Beamlets cause pulsed heating that leads to surface damage

Potential mitigations:

- Surface treatment
- Use higher radiation length materials (Be)
- Decrease impact energy of electrons
 - Longer RF gap
 - Change B || E configuration

D.Stratakis, J.Gallardo, R.Palmer, Nucl. Inst. Meth. A 620 (2010), 147-154

Mechanical stress on the metal is induced due to temperature rise

Temperature rise model for 805MHz copper pillbox

 ΔT_s - safe pulse heating temperature for copper ΔT_d - required temperature for surface fracture

Model prediction of max safe gradient in external magnetic field G_s

D.Stratakis, J.Gallardo, R.Palmer, Nucl. Inst. Meth. A 620 (2010), 147-154

Model of a breakdown in strong B field – prediction vs experiment

High power behavior of previous cavities

Study of breakdown with better control over systematic error is required.

Pillbox cavity

Factors that may affect the fit quality:

- Conditioning history
- Local field enhancement around coupler regions
- Surface treatment

Modular cavity

Old pillbox cavity

Modular cavity

- End walls can be un-mounted easily, allows for material swap
- The gap length can also be varied by replacing the cavity body
- Low E fields in the coupler region

- 805MHz, pillbox geometry
- Water cooling lines

Modular cavity: measurements

- Maximum safe operating gradient in zero and non-zero external B field
- Surface damage formation process dependence on the run conditions
- Effect of high power conditioning sequence on breakdown in strong magnetic fields
- Field emission study to verify the model of beamlet heating (Be endplate program)
- Surface evolution studies

Mucool Test Area (MTA)

Facility built specifically for muon cooling hardware R&D

- Capacity to test 201 and 805MHz cavities in fields up to 5T
- H- beamline can be commissioned through the center of the magnet bore
- Infrastructure for clean room assembly and inspection
- Extensive instrumentation for BD characterization
- Run control system to detect breakdown events and record relevant data streams

Recent experimental programs

- 805MHz: Modular cavity, high-pressure gas-filled cavity
- 201MHz: pillbox MICE cavity

MTA hall: solenoid magnet with inserted 805MHz modular cavity

Spark detection algorithm

Automated system for spark detection - logical OR between:

- Abrupt drop in pickup voltage
- Flash of light from optical ports
- Early spike in reflected power

Figures of merit

Parameter	Range of values
Frequency	805MHz
Mode	TM010
Pulse length	30µs
Repetition rate	5-10 Hz
Stored energy	Up to 20J
Quality factor	~20,000
Pillbox gap length	10cm
Pillbox radius	15cm
Vacuum pressure	~10 ⁻⁸ Torr

Copper endplates experimental program

High-power runs with copper endplates: summary

- First B=0T run: Apr Oct 2015
 - Maximum Safe Operating Gradient of 45 MV/m
 - Ran for ~13M pulses, 130 sparks detected
- First B=3T run: Dec 2015
 - Stable operation below 12 MV/m
 - Ran for ~5M pulses, 55 sparks detected
- "Conditioning" B=0T run: Jan Feb 2016
 - Conditioned up to 22 MV/m
 - Ran for ~14M pulses, 460 sparks detected
- Second B=3T run: Apr 2016
 - Maximum Safe Operating Gradient of order of 10 MV/m
 - Ran for ~3M pulses, 81 sparks detected

← Surface inspection

← Surface inspection

← Surface inspection

Inspection after first B=0T run

- Cavity ran up to ~50MV/m
- 130 breakdown events detected
- Documented ~400 damage features
- Damage is relatively "non-violent" and flat
- No correlation between damage on opposing endplates observed - asymmetry

Examples of most common types of damage

Type 1 Count : > 250

Type 2 Count: 92

400µm

1mm

Inspection after B=3T run

Downstream endplate after B=0T run

Downstream endplate after B=3T run

First time inspections were carried out separately after run at zero magnetic field and run at high magnetic field

All clearly visible damage was inflicted during B=3T run (!)

Inspection after first B=3T run: damage microstructure

Typical BD pits

- Similar to BD damage we observed in other cavities
- Characteristic pit diameter ~1.5mm
- Traces of splashing

splashing

Flat structure

Structure with melted core

5mm

Inspection after B=3T run: 3D imaging

- Damage is much more "violent" than after B=0T
- Melted bulk of copper
- Craters up to ~0.5mm in diameter and up to ~ 60um in depth

SEM analysis will be possible in the future

4/11/2016

Damage microstructure

18

Crater edges Core center

Inspection after B=3T run: damage pattern

- Perfect 1-to-1 correspondence between 168 pits on each endplate
- Detected 55 sparks, but observed 168 damage sites
- Damage distribution is in agreement with E(R) dependence

Map of damage pits

Inspection after B=0T conditioning run

Processed up to 22MV/m in >10M pulses, inflicting ~460 sparks

2mm

No new damage sites observed Some splashing traces disappeared

Microscopic image of splashing pattern after B=3T run

Before 8mm

After

Closer look at splashing patterns

Melted copper "drops"

(Units – microns)

- Features that are being processed out during conditioning
- Splashes mostly lack directionality, often ~cm away from closest BD pit
- Characteristic time to solidify and cool down: 0.1 1s

Common type of damage feature – splash with hollow center

Ongoing analysis: breakdown characterization

We observed drastically different damage after B = 0T and B = 3T runs, which implies different energy deposition mechanisms. Does the data support it?

4/11/2016

Energy dissipation during breakdown events

- Decay time in B=3T is 30% smaller on average → Implies that energy deposition mechanism is more efficient in strong magnetic field
- That is what we have expected to see
 - 1. Based on "violent" type of damage we observed in B=3T
 - 2. Due to focusing of dark current beamlets: higher arc currents and hence lower impedance

Acoustic spark localization

- Goal: correlate location and time of each spark.
 That would help in understanding the surface evolution processes during operation.
- Microscopic surface inspection gives answers to the first one
- Spark detection system is responsible for the latter
- Acoustic system is aiming to bridge the gap between these two

Downstream endplate with microphones attached

Acoustic predictions

Recall: perfect one-to-one damage match

Acoustic predictions map: corresponding locations connected

- All predictions are within 7cm from the center of the endplate (R=14cm) – good agreement with damage distribution
- Error bar of measurement ~ 2cm

Be endplates experimental program

Be endplate program: motivation

Radiation length of Beryllium (~35cm) for electrons in MeV energy range is significantly higher than of copper (~1.4cm)

According to our model, that implies less effect of dark current electrons on a surface and hence, potentially lower breakdown rates per gradient.

Measurements enabled by Beryllium:

- Direct measurement of dark current (Faraday Cup)
- Dark current transverse emittance (film/glass)
- Study of surface evolution

Exterior of Be endplate

First B=0T high-power run results

- Safe operating gradient of 37MV/m established
- 11M RF pulses accumulated
- Detected 160 breakdown events
- Observed ~ 135 damage spots (subjective counting)

Asymmetry between endplates' damage

Damage distribution map

Conclusion

- Cavity behaves as intended to:
 - Providing reproducible measurements
 - Allows for relatively fast inspection (turnaround of ~week)
 - Breakdown happens where we want it to happen
- Surface inspection revealed unique damage characteristic of operation in B=3T: violent nature of breakdown pits and perfect one-to-one correspondence between pits on opposing endplates

 Lower radiation length of Be will allow for more detailed field emission and surface evolution studies

Thank you for your attention

4/11/2016