

Influence of nanoscale surface modifications to the estimated field enhancement and emission currents

V. Zadin, K. Eimre, A. Tamm, K. Kuppart, S. Vigonsky, A. Kyritsakis, A. Aabloo, F. Djurabekova

- IMS Lab, http://www.ims.ut.ee, Institute of Technology, University of Tartu, Estonia
- Department of Physics and Helsinki Institute of Physics

MEVARC 2017

Hypotheses and Aims

- Possible mechanism responsible of field enhancing surface modifications:
 - material structure, fatigue and plastic deformations related causes
 - electric field assisted diffusion of surface atoms
 - reduction of work function due to the influence of oxide layers and contaminants on the surface
- The field enhancement factor may not only be caused by high aspect ratio surface features
- Possible other mechanisms are
 - dynamic, electric field or time dependent changes of surface features,
 - change of work function (due to the oxides)
- The AIM: Fundamental understanding of processes initiating the field emitters
- Checking for the possibilities of surface modifications with least possible assumptions – DFT calculations

Heating and emission currents

Local emission currents – connection to the experiment

- Heat equation in steady state
- Fully coupled currents and temperature
- Emission currents concentrated to the top of the tip
- Nottingham effect included in thermal modelling

Field emitters as nanowires

- Size dependence of electric and thermal conductivity
- Conductivity in nanoscale emitters is significantly decreased (more than 10x for sub-nanometer tip)
- Knudsen number to characterizes nanoscale size effects
- Wiedemann-Franz law for thermal conductivity
- Optionally, temperature dependence in finite size effects

Static surface under el. field

H. Yanagisawa, V. Zadin et al., APL Photonics 1 (2016) 091305

- Field Emission Microscopy experiment
- Collaboration with Dr. Hirofumi Yanagisawa (Max-Planck Institute of Quantum Optics)
- Surface faceting and protrusion formation
- Possible mechanism for emitter formation

Static behavior of single emitter – sensitivity to surface roughness

- We can see different surface modifications leading to small β
 - Large β is needed
- Multiplication of field enhancement factors
 - Can explain observed high beta values
- Incorporates surface roughness
- r_1/r_2<0.1 is needed to observe significant influence

Influence of work function lowering on Fowler-Nordheim plot analysis

The field enhancement factor β is usually found from the slope of FN plot γ by

$$\beta = \frac{-b\phi^{3/2}}{\gamma}$$

The work function is usually assumed to be φ = 4.5, but if the real value is different, then the estimated enhancement is

$$\beta_{estim} = \left(\frac{\phi_{estim}}{\phi_{real}}\right)^{3/2} \beta_{real}$$

Methodology

DFT calculations

Molecular Dynamics

Polycrystal model for MD was created with Voronoi tesselation Each confi cion and equilibra Allows for natural Mishin Cu potential use namics LAMMPS for doing the hard work

Geometries

Work function decrease due to surface defects

Geometry	WF (eV)	dWF	%
Extrusion 1	4.26	0.58	12.0%
Extrusion 2	4.28	0.56	11.6%
Extrusion 2D 3	4.38	0.46	9.5%
Extrusion 2D 2	4.42	0.42	8.7%
Planar	4.50	0.34	7.0%
Extrusion 2D 1	4.57	0.27	5.6%
Single	4.69	0.15	3.1%
Clean Surface	4.84	0.00	0.0%

Smooth 111 surface from literature:

- 4.85 (Gartland, P. O., Slagsvold, B. J.: Phys. Rev. B 12 (1975) 4047)
- 4.88 (Kubiak, G. D.: Surf. Sci. 201 (1988) L475.)

Geometries – arranged by WF

V. Zadin, University of Tartu

MeVArc 2017

Schottky-Nordheim barrier height

Analytical emission current equations assume the Schottky-Nordheim barrier:

$$V(x) = \phi - qFx - \frac{q^2}{16\pi\epsilon_0 x}$$

Maximum of the barrier depend on the electric field F

$$V_{max} = \phi - \frac{q}{2} \sqrt{\frac{F}{\pi \epsilon_0}}$$

Potential landscape around defects

- Potential landscape for different rough surface features with DFT under electric field
 - DFT calculations done for multiple electric field values (potential shown for a geometric slice)
 - Complex potential landscape is formed due to the surface protrusions
- Application of Schottky-Nordheim barrier for such defects questionable
- Difficulties with surface curvature corrected barriers expected as well (GETELEC code)
- Possible solution for work function estimation based on estimation of electron tunneling probabilities

Barrier height dependence on el. field

Geometry	вн	WF-BH
Clean Surface	4.08	0.76
Planar	3.86	0.64
Extrusion 1	3.52	0.74
Extrusion 2	3.51	0.77
Extrusion 2D 1	3.96	0.61
Extrusion 2D 2	3.75	0.67
Extrusion 2D 3	3.67	0.71

Used El. field is 1 GV/m

El field influence to work function

Planar	Extrusion 2D 2	Extrusion 2D 3
rialiai		
	Carried Cook	Acces (CC)
STATE OF THE PARTY	AND COLORS	A CONTRACTOR OF THE PARTY OF TH

Geometry	WF	ВН	WF-BH	(WF-BH)/WF (%)
Clean surface	4.84	4.08	0.76	15.7%
Extrusion 2D 1	4.57	3.96	0.61	13.3%
Planar	4.50	3.86	0.64	14.2%
Extrusion 2D 2	4.42	3.75	0.67	15.2%
Extrusion 2D 3	4.38	3.67	0.71	16.2%
Extrusion 2	4.28	3.51	0.77	18.0%
Extrusion 1	4.26	3.52	0.74	17.4%

- Changes in barrier height remain similar to the clean surface
- Difference between WF and BH used to evaluate work function changes due to field
 - Current work function estimation methodology may be too crude
- El. Field influence to the work function expected to remain small

System energies

- General trend system energy decreases when electric field is applied
 - Field makes surface modifications more stable
- Surface with islands preferred over surface with adatoms
 - Good agreement with previous KMC simulations by V. Jansson
 - Effect observed in experiments as well
- Applied field lowers planar defect energy below clean surface energy
 - Surface roughening due to field energetically feasible

Energy per atom for all geometries (in **meV** = 10^-3 eV)

Field (GV/m)/ Geometry	0	1	2	4
Clean Surface	0.0	-0.36	-1.45	-5.81
Planar	3.67	3.46	2.50	-1.69
Single	3.90	3.61	-	-
Extrusion 1	24.85	24.72	23.71	13.93
Extrusion 2	24.62	24.46	23.42	-
Extrusion 2D 1	0.70	0.46	-	-
Extrusion 2D 2	5.94	5.72	-	-
Extrusion 2D 3	12.78	12.56	-	-

Polycrystalline copper surface deformations due to applied electric field

- Mechanical response of polycrystalline surfaces
- Interaction of grain boundaries with a free surface in electric field
- Electric field is modelled as a force on the surface atoms perpendicular to the surface
- Preferential surface diffusion towards the intersections of grain boundaries with the surface

- Surface atoms identified dynamically during the run by coordination analysis
- Systems generated using Voronoi tessellation
- Green fcc atoms,
- **Grey** surface and grain boundary atoms
- **Red** stacking faults

Surface protrusion evolution

Critical stress dependence on temperature

- Necessary stress for nucleation of surface protrusions decreases linearly with temperature from 300K to 1200K
- Stress needed for nucleation of dislocation ~4 GPa

V. Zadin, University of Tartu MeVArc 2017

Future plans

Conclusions

- Significant work function decrease due to the surface morphology changes
 - Flat surface 4.84 eV vs. defect 4.26 eV
- Electric field leads to formation of complex potential landscape near defects, application of Schottky-Nordheim barrier complicated
 - Current work function estimation methodology may be too crude
 - Influence of electric field to the work function estimated to be small
- Spontaneous protrusion formations possible
 - From grain boundaries or extension to other disordered material defects or spots
- Future plans: In situ SEM tests with nanowires under electric field
 - Aim to observe electric field induced surface modifications

Thank You for Your attention!

<u>V. Zadin</u>, K. Eimre, A. Tamm, K. Kuppart, S. Vigonsky, A. Kyritsakis, A. Aabloo, F. Djurabekova

E-mail: vahur.zadin@ut.ee

