
Roberto Ferrari
Instituto Nazionale di Fisica Nucleare

roberto.ferrari@pv.infn.it

Electronics, Trigger and Data Acquisition
part 2

Summer Student Programme 2016, CERN

July 12, 2016

mailto:roberto.ferrari@pv.infn.it

July 12, 2016 2

Trigger & DAQ

July 12, 2016 3

Basic DAQ: Synchronous Trigger (1)

External View

T sensor

ADC CardT sensor CPU

disk

Physical View

ADC storage

Trigger (periodic)

Logical View

Processing

• Measure temperature
at fixed frequency

• ADC performs analog-
to-digital conversion

– our front-end
electronics

• CPU does readout and
processing

July 12, 2016 4

Basic DAQ: Synchronous Trigger (2)

External View

T sensor

ADC CardT sensor CPU

disk

Physical View

ADC storage

Trigger (periodic)

Logical View

Processing

• Measure temperature
at fixed frequency

• Full sequential 
nothing going in
parallel

• System limited by time
needed to process one
“event”

• If τ ~ 1ms for
ADC conversion
+CPU processing
+storage

 can sustain up to
1/τ~1kHz of periodic
(synchronous) trigger
rate

July 12, 2016 5

What does “Trigger” mean?

The oscilloscope trigger does exactly this:
informs the instrument to initiate the

internal signal acquisition and visualization

The oscilloscope trigger does exactly this:
informs the instrument to initiate the

internal signal acquisition and visualization

• Prompt signal, built with “as simple as possible” criteria, claiming that,
possibly, something interesting took place, initiating the data-acquisition
process [“please, look at that”]

• Keywords: simple, rapid, selective
• selective = efficient for “signal” & resistant to “background”

• Actual parameters strongly dependent on operating conditions
• in multi-level trigger system, “next” level way slower and more complex than

preceding one

July 12, 2016 6

How Trigger was born

simplest case: 2-signal coincidencesimplest case: 2-signal coincidence

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe: (1924-1929) offline  online coincidence (logic AND) of 2 signals

Bruno Rossi: "Method of Registering Multiple Simultaneous Impulses of Several Geiger Counters"
(Nature, 1930), online coincidence of 3 signals (expandable)

“Rossi coincidence circuit was rapidly adopted by experimenters around the world. It was the first
practical AND circuit, precursor of the AND logic circuits of electronic computers”

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe: (1924-1929) offline  online coincidence (logic AND) of 2 signals

Bruno Rossi: "Method of Registering Multiple Simultaneous Impulses of Several Geiger Counters"
(Nature, 1930), online coincidence of 3 signals (expandable)

“Rossi coincidence circuit was rapidly adopted by experimenters around the world. It was the first
practical AND circuit, precursor of the AND logic circuits of electronic computers”

Geiger-Muller countersGeiger-Muller counters

Rossi's circuit: coincidence of signals
of 3 Geiger-Muller counters
Rossi's circuit: coincidence of signals
of 3 Geiger-Muller counters

https://en.wikipedia.org/wiki/Coincidence_circuit
https://en.wikipedia.org/wiki/Coincidence_circuit

July 12, 2016 7

Basic DAQ: Physics Trigger

ADC

Delay

Processing Interrupt

Discriminator

Trigger

Start

disk

Sensor

• Measure β decay
properties

• Asynchronous and
unpredictable events

• need a physics
trigger

• Delay compensates for
trigger latency

• time needed to
reach a decision

• When system busy
(=not ready to react to
triggers)  dead time

July 12, 2016 8

• Measure β decay
properties

• Stochastic (i.e. fully
uncorrelated) process

• fluctuations

Basic DAQ: Real Trigger

ADC

Delay

Processing Interrupt

Discriminator

Trigger

Start

disk

Sensor

Probability of time (in ms) between events for
average decay rate of f=1kHz  λ=1ms

Probability of time (in ms) between events for
average decay rate of f=1kHz  λ=1ms

What if new trigger
arrives when
system busy?

July 12, 2016 9

Basic DAQ: don't loose any event ?

a) Retriggerable DAQ system: any new trigger accepted, each
time causing dead-time restart, regardless of DAQ state

⇒ paralysable DAQ

b) Non retriggerable : none new trigger until dead time elapsed
⇒ non-paralysable DAQ

July 12, 2016 10

Basic DAQ: Real Trigger & Busy

ADC

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Interrupt
Set

Q
Clear

and not

Busy LogicReady

=1ms

• Busy logic avoids
triggers while
processing

• Which (average) DAQ
rate can we achieve
now?

Reminder: τ=1ms
sufficient to fully
handle 1kHz
synchronous trigger

July 12, 2016 11

Being: τ = DAQ dead time (per event) ; f = average signal rate ; ν = average
acquisition rate

  ν∙τ = total DAQ dead time ⇒ (1-ν∙τ) = total DAQ available time

  f∙(1-ν∙τ) = ν ⇒ ν = f/(1+f∙τ) < f, 1/τ

 Efficiency ε = ν/f = 1/(1+f∙τ) < 100%
 Dead time (1-ε) = f∙τ/(1+f∙τ) ⇒ f∙τ < (1-ε) < 1

● Max acquisition speed (f∞) ν1/τ

● Due to stochastic fluctuations, efficiency will always be less than 100%
– in our specific example, τ=1ms, f=1kHz ⇒ ν=500Hz, ε=50%

DAQ Dead Time & Efficiency (1)

July 12, 2016 12

DAQ Dead Time & Efficiency (2)

● Want: ν~f (ε~100%) ⇒ (f∙τ)<<1 ⇒ τ<<1/f
● f=1kHz, ε=99% ⇒ τ=0.01ms ⇒ 1/τ=100kHz

• In order to cope with input signal fluctuations, we have to over-design our DAQ
system by a factor 100. Very inconvenient! Can we mitigate this effect?

July 12, 2016 13

Dead Time  de-randomise

• Processing  bottleneck
• Buffering allows to

decouple problems

Dead time ~ (1+x)-1 ~ 50%

[for x = 1/(f∙τ) ~ 1]
Dead time ~ (∑0..N xj)-1 ~ 1/(N+1)

[N = buffer depth]

July 12, 2016 14

Basic DAQ: De-Randomisation

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Busy Logicand

ADC

FIFO
Full

Data
ready

• First-In First-Out
– buffer area

organized as a
queue

– depth: number of
memory cells

– implemented in HW
and SW

• Buffering introduces
additional latency on
data path

FIFO absorbs and smooths input fluctuations,
providing ~steady (de-randomised) output rate
FIFO absorbs and smooths input fluctuations,

providing ~steady (de-randomised) output rate

July 12, 2016 15

does buffering solve all problems ?

FIFO
•filled with very variable input flow
•emptied at smoothed output flow

  the Leaky-Bucket problem

Q: how often may overflow ?

July 12, 2016 16

Some (Candid) Queueing Theory

N-event buffer ... single queue size N:

Pk : % time with k events in ; P
N

= no space available  dead time

∑Pk=1 [k=0..N]

rate(jj+1) = f∙Pj (fill at rate f)

rate(j+1j) = Pj+1/τ (empty at rate 1/τ)

steady state: f∙Pj=Pj+1/τ ⇒ Pj=Pj+1/(fτ)=x∙Pj+1

for x~1 ⇒ Pj~Pj+1 ⇒ ∑Pk~(N+1)∙P
0
=1 ⇒ P

0
~1/(N+1)

⇒ dead time ~ 1/(N+1)

want want ≤≤ 1% 1% ⇒⇒ N N ≥≥ 100 100

July 12, 2016 17

Some (Candid) Queueing Theory

N-event buffer ... single queue size N:

Pk : % time with k events in ; P
N

= no space available  dead time

∑Pk=1 [k=0..N]

rate(jj+1) = f∙Pj (fill at rate f)

rate(j+1j) = Pj+1/τ (empty at rate 1/τ)

steady state: f∙Pj=Pj+1/τ ⇒ Pj=Pj+1/(fτ)=x∙Pj+1

for x~1 ⇒ Pj~Pj+1 ⇒ ∑Pk~(N+1)∙P
0
=1 ⇒ P

0
~1/(N+1)

⇒ dead time ~ 1/(N+1)

want want ≤≤ 1% 1% ⇒⇒ N N ≥≥ 100 100

Take care: analytic calculation possible for pretty simple systems only

Take care: analytic calculation possible for pretty simple systems only

July 12, 2016 18

De-Randomisation: Queueing Theory

FIFO

1/f = λ



• We can now attain a FIFO
efficiency ~100% with:

– τ ~ 1/f
– “moderate” buffer size

• Two degrees of freedom to play
with

• This dead time often managed by
trigger system itself (“complex
dead time”)

July 12, 2016 19

Dead Time: Summary

1) Simple dead time: avoid overlapping (conflicting) readout window

2) Complex dead time: avoid overflow in front-end buffers
(protection against trigger bursts)

ATLAS uses simply leaky-bucket algorithms with 2 parameters:
max X triggers (X = FIFO depth) in any (sliding) time window = (X*readout time)

July 12, 2016 20

De-Randomisation: Summary

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Busy Logicand

ADC

FIFO
Full

Data
ready

• Almost 100% efficiency and
minimal deadtime may be
achieved if

– ADC able to operate at
rate >> f

– data processing and
storing operates at ~f

• FIFO decouples low latency
front-end from data
processing

– minimize the amount of
“unnecessary” fast
components

• Could “Delay” be replaced
with “FIFO”?

– analog pipelines 
heavily used in LHC DAQs

July 12, 2016 21

Basic DAQ: Collider Mode

• Synchronous particle
collision rate

• Trigger rejects (= does not
select) uninteresting events

• Even if collisions are
synchronous, triggers
unpredictable and
uncorrelated

• De-randomisation still
needed

July 12, 2016 22

Scaling up: Network & Buses

July 12, 2016 23

Basic DAQ: More Channels

 hierarchical structure for handling and
conveyance

 hierarchical structure for handling and
conveyance

July 12, 2016 24

Large DAQ: Constituents

buffer/digitizationbuffer/digitization

July 12, 2016 25

Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/
buffers data

extracts/formats/
buffers dataReadoutReadout

July 12, 2016 26

Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/
buffers data

extracts/formats/
buffers dataReadoutReadout

Event BuildingEvent Building
assembles/buffers

events
assembles/buffers

events

July 12, 2016 27

Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/
buffers data

extracts/formats/
buffers dataReadoutReadout

Event BuildingEvent Building
assembles/buffers

events
assembles/buffers

events

FilteringFiltering
additional

rejection/buffer
additional

rejection/buffer

July 12, 2016 28

Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/
buffers data

extracts/formats/
buffers dataReadoutReadout

Event BuildingEvent Building
assembles/buffers

events
assembles/buffers

events

FilteringFiltering
additional

rejection/buffer
additional

rejection/buffer

Data-LoggingData-Logging
temporary

store/offline
transfer

temporary
store/offline

transfer

July 12, 2016 29

Readout Topology
• Reading out or building events out of many channels requires many components
• Possibly want a modular, scalable system
• In designing our hierarchical data-collection system, we have better define

“building blocks”
– example: readout crates, event building nodes, …

• How to organize interconnections inside and between building blocks ?
• Two main classes: buses or network

=3 x

data
sources

data
processors

July 12, 2016 30

Readout Topology
• Reading out or building events out of many channels requires many components
• Possibly want a modular, scalable system
• In designing our hierarchical data-collection system, we have better define

“building blocks”
– example: readout crates, event building nodes, …

• How to organize interconnections inside and between building blocks ?
• Two main classes: buses or network

=3 x

data
sources

data
processors

Warning
Buses and network are generic concepts that

can be easily confused with their most
common implementations

Warning
Buses and network are generic concepts that

can be easily confused with their most
common implementations

July 12, 2016 31

Buses
• Examples: VME, PCI, SCSI, Parallel ATA, …

– local, external, crate, long distance
• Devices connected via shared lines (bus)

– bus  group of electrical lines
– sharing implies arbitration

• Devices can be master or slave
• Device can be addressed (uniquely identified) on the bus

Device 2 Device 4

Master

Data Lines

Slave

Select Line

Device 1 Device 3

July 12, 2016 32

Bus Facts

Simple 
– fixed number of lines (bus-width)
– devices have to implement well defined hw/sw protocols

● mechanical, electrical, communication, ...

Scalability issues 
– bandwidth shared among all devices
– limited maximum bus width
– maximum bus frequency inversely proportional to bus length
– maximum number of devices depends on bus length

July 12, 2016 33

Bus Facts

Simple 
– fixed number of lines (bus-width)
– devices have to implement well defined hw/sw protocols

● mechanical, electrical, communication, ...

Scalability issues 
– bandwidth shared among all devices
– limited maximum bus width
– maximum bus frequency inversely proportional to bus length
– maximum number of devices depends on bus length

On the long term, other “effects” might limit
your system scalability

On the long term, other “effects” might limit
your system scalability

July 12, 2016 34

Network

• Examples: Ethernet, Telephone, Infiniband, …
• All devices are equal
• Devices communicate directly with each other

– no arbitration, simultaneous communications
• Device communicate by sending messages
• In switched network, switches move messages

between sources and destinations
– find the right path
– handle “congestion” (two messages with the same

destination at the same time)
● would you be surprised to hear that buffering

is the key?

July 12, 2016 35

Network

• Examples: Ethernet, Telephone, Infiniband, …
• All devices are equal
• Devices communicate directly with each other

– no arbitration, simultaneous communications
• Device communicate by sending messages
• In switched network, switches move messages

between sources and destinations
– find the right path
– handle “congestion” (two messages with the same

destination at the same time)
● would you be surprised to hear that buffering

is the key?

Thanks to these characteristics, networks do scale well.
They are the backbones of LHC DAQ systems
Thanks to these characteristics, networks do scale well.
They are the backbones of LHC DAQ systems

July 12, 2016 36

Modular Electronics

July 12, 2016 37

Modular Electronics
• Standard electronics “functions” implemented in well-defined

“containers”
– re-use of generic modules for different applications
– limit the complexity of individual modules  reliability & maintainability
– easy to upgrade to newer versions
– profit from commercially available “functions”

• “Containers” are normally well-defined standards defining mechanical,
electrical, … , interfaces

– “easy” design and integrate your own module
• Historically, in HEP, modular electronics was bus-based

– currently in a mixed phase …

Allow building your own data-acquisition
system just connecting predefined

functions  Fast & Efficient

July 12, 2016 38

NIM
• NIM (1964)

– “Nuclear Instrumentation Modules”
– 50 Ω input/output impedence
– fast modules may have

• rise/fall time: ~1 ns
• duration: ~O(10 ns)
• input/output delay: few ns

● NIM modules usually
– do not need software, are not connected to PCs
– implement logic and signal processing functions

• discriminators, coincidences, amplifiers,
Logic gates, …

– may also provide HV channels
• Typically implement basic trigger and busy

system

New modules still appear on market
Very diffused in medium-size HEP experiments
Found in counting rooms of LHC experiments

New modules still appear on market
Very diffused in medium-size HEP experiments
Found in counting rooms of LHC experiments

July 12, 2016 39

VMEbus
• VMEbus: modules communicate via a

“backplane”
– electrical, mechanical and communication

protocols
• Choice of many HEP experiments for off-

detector electronics [power and control]
– relatively simple protocol
– lot of commercially available functions

• More than 1000 VMEbus crates at CERN

July 12, 2016 40

Other (arising) Standards

• PCI-based

• We know buses have limited scalability. Can we have “network-based” modular
electronics?

• VXS  essentially VME plus switched interconnectivity
• ATCA and derivatives

– standard designed for telecom companies
– high-redundancy, data-throughput, high power density
– being used for LHC upgrade programs

July 12, 2016 41

to be continued...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

