
Roberto Ferrari
Instituto Nazionale di Fisica Nucleare

roberto.ferrari@pv.infn.it

Electronics, Trigger and Data Acquisition
part 2

Summer Student Programme 2016, CERN

July 12, 2016

mailto:roberto.ferrari@pv.infn.it


July 12, 2016 2

Trigger & DAQ
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Basic DAQ: Synchronous Trigger (1)

External View

T sensor

ADC CardT sensor CPU

disk

Physical View

ADC storage

Trigger (periodic)

Logical View

Processing

• Measure temperature 
at fixed frequency

• ADC performs analog-
to-digital conversion

– our front-end 
electronics

• CPU does readout and 
processing 
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Basic DAQ: Synchronous Trigger (2)

External View

T sensor

ADC CardT sensor CPU

disk

Physical View

ADC storage

Trigger (periodic)

Logical View

Processing

• Measure temperature 
at fixed frequency

• Full sequential  
nothing going in  
parallel

• System limited by time 
needed to process one 
“event”

• If τ ~ 1ms for
ADC conversion 
+CPU processing 
+storage

  can sustain up to 
1/τ~1kHz of periodic 
(synchronous) trigger 
rate
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What does “Trigger” mean?

The oscilloscope trigger does exactly this: 
informs the instrument to initiate the 

internal signal acquisition and visualization

The oscilloscope trigger does exactly this: 
informs the instrument to initiate the 

internal signal acquisition and visualization

• Prompt signal, built with “as simple as possible” criteria, claiming that, 
possibly, something interesting took place, initiating the data-acquisition 
process [ “please, look at that” ]

• Keywords: simple, rapid, selective
• selective = efficient for “signal” & resistant to “background” 

• Actual parameters strongly dependent on operating conditions
• in multi-level trigger system, “next” level way slower and more complex than 

preceding one
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How Trigger was born

simplest case: 2-signal coincidencesimplest case: 2-signal coincidence

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe: (1924-1929) offline  online coincidence (logic AND) of 2 signals

Bruno Rossi: "Method of Registering Multiple Simultaneous Impulses of Several Geiger Counters" 
(Nature, 1930), online coincidence of 3 signals (expandable)

“Rossi coincidence circuit was rapidly adopted by experimenters around the world. It was the first 
practical AND circuit, precursor of the AND logic circuits of electronic computers”

https://en.wikipedia.org/wiki/Coincidence_circuit :

Walther Bothe: (1924-1929) offline  online coincidence (logic AND) of 2 signals

Bruno Rossi: "Method of Registering Multiple Simultaneous Impulses of Several Geiger Counters" 
(Nature, 1930), online coincidence of 3 signals (expandable)

“Rossi coincidence circuit was rapidly adopted by experimenters around the world. It was the first 
practical AND circuit, precursor of the AND logic circuits of electronic computers”

Geiger-Muller countersGeiger-Muller counters

Rossi's circuit: coincidence of signals 
of 3 Geiger-Muller counters
Rossi's circuit: coincidence of signals 
of 3 Geiger-Muller counters

https://en.wikipedia.org/wiki/Coincidence_circuit
https://en.wikipedia.org/wiki/Coincidence_circuit
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Basic DAQ: Physics Trigger

ADC

Delay

Processing Interrupt

Discriminator

Trigger

Start

disk

Sensor

• Measure β decay 
properties

• Asynchronous and 
unpredictable events

• need a physics 
trigger

• Delay compensates for 
trigger latency

• time needed to 
reach a decision

• When system busy 
(=not ready to react to 
triggers)  dead time
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• Measure β decay 
properties

• Stochastic (i.e. fully 
uncorrelated) process

• fluctuations

Basic DAQ: Real Trigger

ADC

Delay

Processing Interrupt

Discriminator

Trigger

Start

disk

Sensor

Probability of time (in ms) between events for 
average decay rate of f=1kHz  λ=1ms

Probability of time (in ms) between events for 
average decay rate of f=1kHz  λ=1ms

What if new trigger 
arrives when 
system busy?
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Basic DAQ: don't loose any event ?

a) Retriggerable DAQ system: any new trigger accepted, each 
time causing dead-time restart, regardless of DAQ state

⇒ paralysable DAQ

b) Non retriggerable : none new trigger until dead time elapsed 
⇒ non-paralysable DAQ
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Basic DAQ: Real Trigger & Busy

ADC

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Interrupt
Set

Q
Clear

and not

Busy LogicReady

=1ms

• Busy logic avoids 
triggers while 
processing

• Which (average) DAQ 
rate can we achieve 
now?

Reminder: τ=1ms 
sufficient to fully 
handle 1kHz 
synchronous trigger
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Being: τ = DAQ dead time (per event) ; f = average signal rate ; ν = average 
acquisition rate

         ν∙τ = total DAQ dead time     ⇒     (1-ν∙τ) = total DAQ available time

               f∙(1-ν∙τ) = ν     ⇒     ν = f/(1+f∙τ) < f, 1/τ

                        Efficiency ε = ν/f = 1/(1+f∙τ) < 100%
                        Dead time (1-ε) = f∙τ/(1+f∙τ)   ⇒   f∙τ < (1-ε) < 1

● Max acquisition speed (f∞)  ν1/τ

● Due to stochastic fluctuations, efficiency will always be less than 100%
– in our specific example, τ=1ms, f=1kHz ⇒ ν=500Hz, ε=50%

DAQ Dead Time & Efficiency (1)
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DAQ Dead Time & Efficiency (2)

● Want:   ν~f (ε~100%)   ⇒   (f∙τ)<<1   ⇒   τ<<1/f
● f=1kHz, ε=99%   ⇒   τ=0.01ms   ⇒   1/τ=100kHz

• In order to cope with input signal fluctuations, we have to over-design our DAQ 
system by a factor 100. Very inconvenient! Can we mitigate this effect?
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Dead Time  de-randomise

• Processing  bottleneck
• Buffering allows to 

decouple problems

Dead time ~ (1+x)-1 ~ 50%

[ for x = 1/(f∙τ) ~ 1 ]
Dead time ~ (∑0..N xj)-1 ~ 1/(N+1)

[ N = buffer depth ]
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Basic DAQ: De-Randomisation

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Busy Logicand

ADC

FIFO
Full

Data
ready

• First-In First-Out
– buffer area 

organized as a 
queue

– depth: number of 
memory cells

– implemented in HW 
and SW

• Buffering introduces 
additional latency on 
data path

FIFO absorbs and smooths input fluctuations, 
providing ~steady (de-randomised) output rate
FIFO absorbs and smooths input fluctuations, 

providing ~steady (de-randomised) output rate
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does buffering solve all problems ?

FIFO 
•filled with very variable input flow
•emptied at smoothed output flow

                      the Leaky-Bucket problem      

                     

Q: how often may overflow ?



July 12, 2016 16

Some (Candid) Queueing Theory

N-event buffer ... single queue size N:

Pk : % time with k events in ; P
N 

= no space available  dead time

∑Pk=1 [ k=0..N ]

rate(jj+1) = f∙Pj         (fill at rate f)

rate(j+1j) = Pj+1/τ     (empty at rate 1/τ)

steady state:   f∙Pj=Pj+1/τ   ⇒   Pj=Pj+1/(fτ)=x∙Pj+1

for x~1   ⇒   Pj~Pj+1   ⇒   ∑Pk~(N+1)∙P
0
=1   ⇒   P

0
~1/(N+1)

⇒   dead time ~ 1/(N+1)

want want ≤≤ 1%    1%   ⇒⇒   N    N ≥≥ 100 100
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N-event buffer ... single queue size N:

Pk : % time with k events in ; P
N 

= no space available  dead time

∑Pk=1 [ k=0..N ]

rate(jj+1) = f∙Pj         (fill at rate f)
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0
=1   ⇒   P

0
~1/(N+1)

⇒   dead time ~ 1/(N+1)

want want ≤≤ 1%    1%   ⇒⇒   N    N ≥≥ 100 100

Take care: analytic calculation possible for pretty simple systems only

Take care: analytic calculation possible for pretty simple systems only
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De-Randomisation: Queueing Theory

FIFO

1/f = λ



• We can now attain a FIFO 
efficiency ~100% with:

– τ ~ 1/f
– “moderate” buffer size

• Two degrees of freedom to play 
with

• This dead time often managed by 
trigger system itself (“complex 
dead time”)
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Dead Time: Summary

1) Simple dead time: avoid overlapping (conflicting) readout window

2) Complex dead time: avoid overflow in front-end buffers 
(protection against trigger bursts) 

ATLAS uses simply leaky-bucket algorithms with 2 parameters:
max X triggers (X = FIFO depth) in any (sliding) time window = (X*readout time)
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De-Randomisation: Summary

Delay

Processing

Discriminator

Trigger

Start

disk

Sensor

Busy Logicand

ADC

FIFO
Full

Data
ready

•  Almost 100% efficiency and 
minimal deadtime may be 
achieved if

– ADC able to operate at 
rate >> f

– data processing and 
storing operates at ~f

• FIFO decouples low latency 
front-end from data 
processing

– minimize the amount of 
“unnecessary” fast 
components

• Could “Delay” be replaced 
with “FIFO”?

– analog pipelines  
heavily used in LHC DAQs
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Basic DAQ: Collider Mode

• Synchronous particle 
collision rate

• Trigger rejects (= does not 
select) uninteresting events

• Even if collisions are 
synchronous, triggers 
unpredictable and 
uncorrelated

• De-randomisation still 
needed
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Scaling up: Network & Buses



July 12, 2016 23

Basic DAQ: More Channels

 hierarchical structure for handling and 
conveyance

 hierarchical structure for handling and 
conveyance
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Large DAQ: Constituents

buffer/digitizationbuffer/digitization
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Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/ 
buffers data

extracts/formats/ 
buffers dataReadoutReadout
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Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/ 
buffers data

extracts/formats/ 
buffers dataReadoutReadout

Event BuildingEvent Building
assembles/buffers 

events
assembles/buffers 

events
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Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/ 
buffers data

extracts/formats/ 
buffers dataReadoutReadout

Event BuildingEvent Building
assembles/buffers 

events
assembles/buffers 

events

FilteringFiltering
additional 

rejection/buffer
additional 

rejection/buffer
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Large DAQ: Constituents

buffer/digitizationbuffer/digitization

extracts/formats/ 
buffers data

extracts/formats/ 
buffers dataReadoutReadout

Event BuildingEvent Building
assembles/buffers 

events
assembles/buffers 

events

FilteringFiltering
additional 

rejection/buffer
additional 

rejection/buffer

Data-LoggingData-Logging
temporary 

store/offline 
transfer

temporary 
store/offline 

transfer



July 12, 2016 29

Readout Topology
• Reading out or building events out of many channels requires many components
• Possibly want a modular, scalable system
• In designing our hierarchical data-collection system, we have better define 

“building blocks”
– example: readout crates, event building nodes, …

• How to organize interconnections inside and between building blocks ?
• Two main classes: buses or network

=3 x

data
sources

data
processors
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Readout Topology
• Reading out or building events out of many channels requires many components
• Possibly want a modular, scalable system
• In designing our hierarchical data-collection system, we have better define 

“building blocks”
– example: readout crates, event building nodes, …

• How to organize interconnections inside and between building blocks ?
• Two main classes: buses or network

=3 x

data
sources

data
processors

Warning
Buses and network are generic concepts that 

can be easily confused with their most 
common implementations 

Warning
Buses and network are generic concepts that 

can be easily confused with their most 
common implementations 
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Buses
• Examples: VME, PCI, SCSI, Parallel ATA, …

– local, external, crate, long distance
• Devices connected via shared lines (bus)

– bus  group of electrical lines
– sharing implies arbitration

• Devices can be master or slave
• Device can be addressed (uniquely identified) on the bus

Device 2 Device 4

Master

Data Lines

Slave

Select Line

Device 1 Device 3
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Bus Facts

Simple 
– fixed number of lines (bus-width)
– devices have to implement well defined hw/sw protocols

● mechanical, electrical, communication, ...

Scalability issues 
– bandwidth shared among all devices
– limited maximum bus width
– maximum bus frequency inversely proportional to bus length
– maximum number of devices depends on bus length
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Bus Facts

Simple 
– fixed number of lines (bus-width)
– devices have to implement well defined hw/sw protocols

● mechanical, electrical, communication, ...

Scalability issues 
– bandwidth shared among all devices
– limited maximum bus width
– maximum bus frequency inversely proportional to bus length
– maximum number of devices depends on bus length

On the long term, other “effects” might limit 
your system scalability

On the long term, other “effects” might limit 
your system scalability
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Network

• Examples: Ethernet, Telephone, Infiniband, …
• All devices are equal
• Devices communicate directly with each other

– no arbitration, simultaneous communications
• Device communicate by sending messages
• In switched network, switches move messages 

between sources and destinations
– find the right path
– handle “congestion” (two messages with the same 

destination at the same time)
● would you be surprised to hear that buffering 

is the key? 
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Network

• Examples: Ethernet, Telephone, Infiniband, …
• All devices are equal
• Devices communicate directly with each other

– no arbitration, simultaneous communications
• Device communicate by sending messages
• In switched network, switches move messages 

between sources and destinations
– find the right path
– handle “congestion” (two messages with the same 

destination at the same time)
● would you be surprised to hear that buffering 

is the key? 

Thanks to these characteristics, networks do scale well. 
They are the backbones of LHC DAQ systems
Thanks to these characteristics, networks do scale well. 
They are the backbones of LHC DAQ systems
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Modular Electronics
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Modular Electronics
• Standard electronics “functions” implemented in well-defined 

“containers”
– re-use of generic modules for different applications
– limit the complexity of individual modules  reliability & maintainability
– easy to upgrade to newer versions
– profit from commercially available “functions”

• “Containers” are normally well-defined standards defining mechanical, 
electrical, … , interfaces

– “easy” design and integrate your own module 
• Historically, in HEP, modular electronics was bus-based

– currently in a mixed phase … 

Allow building your own data-acquisition 
system just connecting predefined 

functions  Fast & Efficient
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NIM
• NIM (1964)

– “Nuclear Instrumentation Modules”
– 50 Ω input/output impedence
– fast modules may have

• rise/fall time: ~1 ns
• duration: ~O(10 ns)
• input/output delay: few ns

● NIM modules usually
– do not need software, are not connected to PCs
– implement logic and signal processing functions

• discriminators, coincidences, amplifiers, 
Logic gates, …

– may also provide HV channels
• Typically implement basic trigger and busy 

system

New modules still appear on market
Very diffused in medium-size HEP experiments
Found in counting rooms of LHC experiments

New modules still appear on market
Very diffused in medium-size HEP experiments
Found in counting rooms of LHC experiments
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VMEbus
• VMEbus: modules communicate via a 

“backplane”
– electrical, mechanical and communication 

protocols
• Choice of many HEP experiments for off-

detector electronics [ power and control ]
– relatively simple protocol
– lot of commercially available functions

• More than 1000 VMEbus crates at CERN 



July 12, 2016 40

Other (arising) Standards

• PCI-based

• We know buses have limited scalability. Can we have “network-based” modular 
electronics?

• VXS  essentially VME plus switched interconnectivity
• ATCA and derivatives

– standard designed for telecom companies
– high-redundancy, data-throughput, high power density
– being used for LHC upgrade programs
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to be continued...
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