Cosmology I: Measuring and weighing the Universe

Ruth Durrer

Département de Physique Théorique et CAP Université de Genève Suisse

August 1, 2016

Ruth Durrer (Université de Genève) [Cosmology I](#page-39-0) August 1, 2016 1 / 23

 QQ

ヨメ イヨメ

◆ ロ ▶ → 何

Contents

 $2Q$

メロトメ 伊 トメ ミトメ ミト

Radius of the Earth: $\simeq 6000$ km

 299

メロメメ 御きメ ミトメ きょ

The solar system \simeq 7 \times 10 9 km (\simeq 50au =50 'astronomical units') 1 au $\simeq 1.5 \times 10^8$ km is the average distance between the earth and the sun

Vianus regume **PLANETS DWARF PLANETS**

(source: wikipedia)

 $\overline{150}$ $\overline{150}$ $\overline{150}$ [15](#page-2-0)[00](#page-3-0)0 $\overline{150}$ [1](#page-0-0)5000 $\overline{150}$ $\overline{150}$ $\overline{150}$ $\overline{150}$ $\overline{150}$ $\overline{150}$

The Milky Way (visible part) \simeq 10 18 km \simeq 10 5 light years \simeq 30 $^{\prime}$ 000parsec

(ロ) (d)

 $2Q$

The Milky Way (visible part) \simeq 10 18 km \simeq 10 5 light years \simeq 30 $^{\prime}$ 000parsec

 $1'' = 1^{\circ}/3600 = 1$ arc second

1 pa[rse](#page-4-0)[c](#page-6-0) \simeq \simeq \simeq [3](#page-4-0)[.](#page-5-0)[2](#page-6-0)[6](#page-1-0) [li](#page-2-0)[g](#page-6-0)[ht](#page-7-0) [ye](#page-2-0)[a](#page-6-0)[r](#page-7-0)s (ロ) (d)

一本 三つ

 $2Q$

The size of the 'visible Universe' (Hubble scale) \simeq 28000Mpc = 2.8 \times 10¹⁰parsec (Contains about 0.5×10^{12} galaxies like the Milky Way with mass of about 10^{12} M_o)

Each point represents a galaxy (Sloan digital sky survey, SDSS)

 \cap a \cap

As you know, Newtonian gravity is an attractive force. Each mass is attracted by every other mass.

 $2Q$

イロト イ母 トイラト イラト

As you know, Newtonian gravity is an attractive force.

Each mass is attracted by every other mass.

Despite this fact, observations show that the Universe is expanding.

Galaxies recede from each other with a speed proportional to their distance,

$$
v = \dot{B} = H_0 \cdot B \qquad \text{(Hubble's law, } H_0 \simeq 70 \text{km/s/Mpc)}
$$

つひひ

 $2Q$

To determine the 'Hubble diagram' we have to measure two things: the speed and the distance of far away galaxies.

 $2Q$

メロトメ 伊 トメ ミトメ ミト

To determine the 'Hubble diagram' we have to measure two things: the speed and the distance of far away galaxies.

• To mesure the speed we mesure the redshift. This is the Doppler effect for light:

$$
z = \frac{\lambda - \lambda_e}{\lambda_e} \simeq v/c, \quad \text{if } z \ll 1 \quad \left(z = \sqrt{\frac{1 + v/c}{1 - v/c}} - 1 \right).
$$

 QQ

医重新注意术

K ロ ト K 何 ト

Redshift

Astronomical observations can be made in different wavelengths bands of the electromagnetic spectrum. In the optical band specific spectral lines (atomic transitions) are at fixed wavelength **observations astronomiques**

In a source moving away from us these spectral lines are shifted towards the red, 'redshifted'

 Ω

To determine the 'Hubble diagram' we have to measure two things: the speed and the distance of far away galaxies.

• To mesure the speed we mesure the redshift. This is the Doppler effect for light:

$$
z = \frac{\lambda - \lambda_e}{\lambda_e} = v/c, \quad \text{if } z \ll 1 \quad \left(z = \sqrt{\frac{1 + v/c}{1 - v/c}} - 1 \right).
$$

Mesuring redshifts is easy, but measuring distances is difficult. We need 'standard candles' (or 'standard rulers').

 QQ

To determine the 'Hubble diagram' we have to measure two things: the speed and the distance of far away galaxies.

• To mesure the speed we mesure the redshift. This is the Doppler effect for light:

$$
z = \frac{\lambda - \lambda_e}{\lambda_e} = v/c, \quad \text{if } z \ll 1 \quad \left(z = \sqrt{\frac{1 + v/c}{1 - v/c}} - 1 \right).
$$

- Mesuring redshifts is easy, but measuring distances is difficult. We need 'standard candles' (or 'standard rulers').
- In cosmology, seeing far away objects means looking into the past. We see the Andromeda galaxy as it was about 2 million years ago.

イロメ イ母メ イヨメ イヨメ

 $2Q$

To determine the 'Hubble diagram' we have to measure two things: the speed and the distance of far away galaxies.

• To mesure the speed we mesure the redshift. This is the Doppler effect for light:

$$
z = \frac{\lambda - \lambda_e}{\lambda_e} = v/c, \quad \text{if } z \ll 1 \quad \left(z = \sqrt{\frac{1 + v/c}{1 - v/c}} - 1 \right).
$$

- Mesuring redshifts is easy, but measuring distances is difficult. We need 'standard candles' (or 'standard rulers').
- In cosmology, seeing far away objects means looking into the past. We see the Andromeda galaxy as it was about 2 million years ago.
- A moment in the past can be characterized by its redshift *z*.

 QQ

∢ロト (御) ∢き) ∢き)

To determine the 'Hubble diagram' we have to measure two things: the speed and the distance of far away galaxies.

• To mesure the speed we mesure the redshift. This is the Doppler effect for light:

$$
z = \frac{\lambda - \lambda_e}{\lambda_e} = v/c, \quad \text{if } z \ll 1 \quad \left(z = \sqrt{\frac{1 + v/c}{1 - v/c}} - 1 \right).
$$

- Mesuring redshifts is easy, but measuring distances is difficult. We need 'standard candles' (or 'standard rulers').
- In cosmology, seeing far away objects means looking into the past. We see the Andromeda galaxy as it was about 2 million years ago.
- A moment in the past can be characterized by its redshift *z*.
- \bullet The present expansion rate of the Universe is $H_0 \simeq 70$ km/s/Mpc. In the past it has been different. We want to determine the expansion rate as function of the redshift, *H*(*z*). For this we have to measure the redshift *z* and the distance *d* of far away galaxies.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Standard candles

The most powerful standard candles are supernovae of type Ia.

(SN1994D)

 299

メロトメ 伊 トメ ミトメ ミト

SNIa light curve

After application of a 'stretch factor' the maximum of the light curve, i.e. the maximum of the luminosity is nearly the same for all supernovae Ia.

Without correction.

After correction.

4 0 8

 Ω

The Universe is in *accelerated* expansion

Distance modulus $=$ log(apparent luminosity)+ constant $=$ $\log(1/d_{L}^{2})$ $+$ constant

Ruth Durrer (Université de Genève) and the [Cosmology I](#page-0-0) Cosmology I August 1, 2016 14/23

 290

Þ

∋⇒ ×

4 0 8

The Universe is in *accelerated* expansion

Distance modulus $=$ log(apparent luminosity)+ constant $=$ $\log(1/d_{L}^{2})$ $+$ constant $d_L(z) = (1 + z) \int_0^z$ 0 *dz*⁰ $H(z')$ $H = \frac{\dot{B}}{B}$ $\frac{H}{R}$ = $(1 + z)\dot{a}(z)$

 $a = R/R₀$

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

 290

 $\ddot{R}(z) > 0$, $\ddot{R}(z) > 0$ for $z < 0.5$.

The Universe is in *accelerated* expansion
————————————————————

 Ω

Nobel Prize in Physics 2011

in the first second

Adam G. Riess Brian P. Schmidt Saul Perlmutter

The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perlmutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

つへへ

Understanding the expansion of the Universe within Newtonian gravity

We consider a test mass *m* at the border of a homogeneous sphere of density ρ , which is expanding with velocity $v = R$.

4 D F

 Ω

Understanding the expansion of the Universe within Newtonian gravity

We consider a test mass *m* at the border of a homogeneous sphere of density ρ , which is expanding with velocity $v = R$.

m
M

$$
M = (4\pi/3)R^3\rho
$$

K ロ ト K 何 ト

Its energy is

$$
E = \frac{m}{2}v^2 + U = \frac{m}{2}v^2 - \frac{GmM}{R} = \frac{m}{2}v^2 - \frac{4\pi G}{3}m\rho R^2
$$

 QQ

 \rightarrow \Rightarrow \rightarrow \Rightarrow \rightarrow

We consider a test mass *m* at the border of a homogeneous sphere of density ρ , which is expanding with velocity $v = R$.

m
M

$$
M = (4\pi/3)R^3\rho
$$

Its energy is

$$
E = \frac{m}{2}v^2 + U = \frac{m}{2}v^2 - \frac{GmM}{R} = \frac{m}{2}v^2 - \frac{4\pi G}{3}m\rho R^2
$$

As energy is conserved, 2 $E/m =: -K = \text{constant} = \dot{R}^2 - 8\pi G\rho R^2/3$. With $H^2 = \left(\frac{\dot{R}}{R}\right)^2$ we obtain

$$
H^2+\frac{K}{R^2}=\frac{8\pi G}{3}\rho
$$

 QQQ

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

We consider a test mass *m* at the border of a homogeneous sphere of density ρ , which is expanding with velocity $v = R$.

m
M

$$
M = (4\pi/3)R^3\rho
$$

Its energy is

$$
E = \frac{m}{2}v^2 + U = \frac{m}{2}v^2 - \frac{GmM}{R} = \frac{m}{2}v^2 - \frac{4\pi G}{3}m\rho R^2
$$

As energy is conserved, 2 $E/m =: -K = \text{constant} = \dot{R}^2 - 8\pi G\rho R^2/3$. With $H^2 = \left(\frac{\dot{R}}{R}\right)^2$ we obtain

$$
H^2+\frac{K}{R^2}=\frac{8\pi G}{3}\rho
$$

This is the Friedmann equation (1922).

 QQQ

Understanding the expansion of the Universe within Newtonian gravity

Due to the expansion, the density decreases,

$$
\rho = \frac{M}{\frac{4\pi}{3}R^3}, \qquad \dot{\rho} = -3\rho \frac{\dot{R}}{R}
$$

 $2Q$

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐

Due to the expansion, the density decreases,

$$
\rho = \frac{M}{\frac{4\pi}{3}R^3}, \qquad \dot{\rho} = -3\rho \frac{\dot{R}}{R}
$$

If we insert this in the derivative of the Friedmann equation we find

$$
\frac{d}{dt}\left[\left(\frac{\dot{H}}{H}\right)^{2} + \frac{K}{H^{2}}\right] = 2\left[\frac{\ddot{H}}{H} - \left(\frac{\dot{H}}{H}\right)^{2} - \frac{K}{H^{2}}\right]\frac{\dot{H}}{H} = \frac{8\pi G}{3}\dot{\rho} = -8\pi G\rho\frac{\dot{H}}{H}
$$

$$
\frac{\ddot{H}}{H} = -\frac{4\pi G}{3}\rho < 0.
$$

 $2Q$

メロトメ 伊 トメ ミトメ ミト

Due to the expansion, the density decreases,

$$
\rho = \frac{M}{\frac{4\pi}{3}R^3}, \qquad \dot{\rho} = -3\rho \frac{\dot{R}}{R}
$$

If we insert this in the derivative of the Friedmann equation we find

$$
\frac{d}{dt}\left[\left(\frac{\dot{H}}{H}\right)^{2} + \frac{K}{H^{2}}\right] = 2\left[\frac{\ddot{H}}{H} - \left(\frac{\dot{H}}{H}\right)^{2} - \frac{K}{H^{2}}\right]\frac{\dot{H}}{H} = \frac{8\pi G}{3}\dot{\rho} = -8\pi G\rho\frac{\dot{H}}{H}
$$

$$
\frac{\ddot{H}}{H} = -\frac{4\pi G}{3}\rho < 0.
$$

This is the 2nd Friedmann equation (1922). It requires that the expansion decelerates!

 Ω

The expansion of the Universe within General relativity

Including general relativity these equations are modified:

$$
\left(\frac{\dot{R}}{R}\right)^2 + \frac{K}{R^2} = \frac{8\pi G}{3c^2}\rho_E + \frac{\Lambda}{3}
$$

$$
\frac{\ddot{R}}{R} = -\frac{4\pi G}{3c^2}(\rho_E + 3P) + \frac{\Lambda}{3}
$$

P is the pressure and Λ is the cosmological constant,

 ρ_E is the energy density. For ordinary matter $\rho_E = c^2 \rho$, and c is the speed of light. *K* now has a new interpretation. It is the curvature of space.

 QQ

The expansion of the Universe within General relativity

Including general relativity these equations are modified:

$$
\left(\frac{\dot{R}}{R}\right)^2 + \frac{K}{R^2} = \frac{8\pi G}{3c^2}\rho_E + \frac{\Lambda}{3}
$$

$$
\frac{\ddot{R}}{R} = -\frac{4\pi G}{3c^2}(\rho_E + 3P) + \frac{\Lambda}{3}
$$

P is the pressure and Λ is the cosmological constant, ρ_E is the energy density. For ordinary matter $\rho_E = c^2 \rho$, and c is the speed of light. *K* now has a new interpretation. It is the curvature of space.

Introducing the 'density' parameters

$$
\Omega_m = \frac{8\pi G \rho_E}{3c^2 H^2} \,, \qquad \Omega_K = -\frac{K}{R^2 H^2} \,, \qquad \Omega_\Lambda = \frac{\Lambda}{3H^2} \,,
$$

the first Friedmann eqn. becomes

$$
\Omega_m+\Omega_\Lambda+\Omega_K=1.
$$

 QQQ

 $K > 0$ ($\Omega_K < 0$): spherical space,

 $K < 0$ ($\Omega_K > 0$): pseudo-spherical space (saddle),

 $K = 0$ ($\Omega_K = 0$): flat space.

K ロ ▶ K 御 ▶ K 唐 ▶ K 唐

MAP990006

 $2Q$

The Universe is in *accelerated* expansion

Matter, Ω*m*, and cosmological constant, Ω_{Λ} (dark energy).

tra. [Thes](#page-32-0)e [limit](#page-34-0)s are improved significantly by the inclusion of the *Planck* l[ens](#page-32-0)[ing r](#page-33-0)[ec](#page-34-0)[on](#page-6-0)[str](#page-7-0)[uction](#page-39-0) [\(](#page-6-0)[blu](#page-7-0)[e co](#page-39-0)[ntour](#page-0-0)[s\) and](#page-39-0) BAO

The Universe is in *accelerated* expansion

If pressure is negative,

 $P = w \rho_F$ with $w < -1/3$ we can have accelerated expansion (\ddot{R} > 0) without a cosmological constant. Such a component is called dark energy. A cosmological constant corresponds to a dark energy component with $w = -1$.

The matter fraction and the parameter *w* of dark energy (Kessler et al. '09).

 Ω

Looking at far away objects in the Universe we are looking into the past.

 OQ

メロトメ 伊 トメ ミトメ ミト

- Looking at far away objects in the Universe we are looking into the past.
- The Universe is expanding. More distant galaxies recede from us faster than more close by ones.

 $2Q$

- Looking at far away objects in the Universe we are looking into the past.
- The Universe is expanding. More distant galaxies recede from us faster than more close by ones.
- The distance to a galaxy, or the time at which its light which is currently reaching us has been emitted is determined by its redshift.

 QQ

- Looking at far away objects in the Universe we are looking into the past.
- The Universe is expanding. More distant galaxies recede from us faster than more close by ones.
- The distance to a galaxy, or the time at which its light which is currently reaching us has been emitted is determined by its redshift.
- The Hubble diagram gives the distance of objects as function of their redshift.

 QQ

イロメ イ母メ イヨメ イヨメ

- Looking at far away objects in the Universe we are looking into the past.
- The Universe is expanding. More distant galaxies recede from us faster than more close by ones.
- The distance to a galaxy, or the time at which its light which is currently reaching us has been emitted is determined by its redshift.
- The Hubble diagram gives the distance of objects as function of their redshift.
- Recent observations have shown that the expansion of the Universe is accelerated. Understanding this within general relativity requires 'dark energy'.

 Ω

イロメ イ母メ イヨメ イヨメ