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Introduction to Monte Carlo

• Lecture 1: The Monte Carlo method

✤ theoretical foundations and limitations

✤ parton-level event generation

• Lecture 2: Hadron-level event generation

✤ parton showering

✤ hadronization and underlying event

✤ sample of results
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Why Monte Carlo?

• Something to do with gambling?

• Not a place but a method …
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Monte Carlo 
Event Generation
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Monte Carlo Event Generation

• Aim is to produce simulated (particle-level) datasets like 
those from real collider events

✤ i.e. lists of particle identities, momenta, ...

✤ simulate quantum effects by (pseudo)random numbers

• Essential for:

✤ Designing new experiments and data analyses

✤ Correcting for detector and selection effects

✤ Testing the SM and measuring its parameters

✤ Estimating new signals and their backgrounds
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Monte Carlo Method
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Buffon’s needle
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2x10/5 = 4.000

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x20/12 = 3.333

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x30/16 = 3.750

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x40/22 = 3.636

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x50/28 = 3.571

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x60/34 = 3.529

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x70/40 = 3.500

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x80/47 = 3.404

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x90/55 = 3.273

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle
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2x100/63 = 3.175

G-L Leclerc, Comte de Buffon, 1707-1788
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Buffon’s needle

18

x sinq
q
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P(x<sinq)=2/p

q
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1

Events (needle drops) 
are represented by 
random points in 
(q,x) phase space 
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Buffon’s needle
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Number of events

p
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Buffon’s needle
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Number of events

p
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Buffon’s needle
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Number of events
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Buffon’s needle
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Number of events

p



Introduction to Monte Carlo Techniques CERN Summer Student Lectures 2016

Some statistics
• Expected value of a discrete random variable x = 

probability-weighted sum over possible outcomes = 
expected mean of a large number of independent trials

✤ E[x] = x1p1+ x2p2+ x3p3+ …

✤ Here x1=1 (needle on line, p1=2/p) or else x2= 0 
(needle off line).  Hence E[x]=2/p

• Variance = Mean square deviation

✤ Var[x] = E[(x-E[x])2] = E[x2]-(E[x])2

✤ Here Var[x] = p1-p12 = 2/p(1-2/p)

• (RMS) Standard deviation  sx =√Var[x] = 0.481 here

23



Introduction to Monte Carlo Techniques CERN Summer Student Lectures 2016

• Variances for uncorrelated random variables are additive

✤ Var[x1+x2] = Var[x1] +Var[x2] +2(E[x1x2]-E[x1]E[x2])

• For N identical independent trials and SN=x1+…+xN,

✤ E[SN] = N E[x],  Var[SN] = N Var[x],  sSN =√N sx 

• Here, for N needles, E[SN]= 2N/p, so sp/p = sSN/E[SN] = 
√N sx/(2N/p), i.e. standard deviation in estimate of p is

✤ sp = p2 sx /(2√N) = 2.37 /√N

• 2N/SN  =  p + 2.37 /√N

Statistics (cont’d)
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1�

Central limit theorem:

P (< 1�) = 68%



Introduction to Monte Carlo Techniques CERN Summer Student Lectures 2016

Buffon’s needle
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Number of events

p
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Buffon’s needle
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Number of events

p
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Buffon’s needle
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Number of events

p
68%

16%

16%
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Monte Carlo Integration
• Basis of all Monte Carlo methods:

• Then
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Convergence
• Monte Carlo integrals governed by Central Limit 

Theorem: error

   c.f. trapezium rule

        Simpson’s rule
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only if derivatives exist 
and are finite, e.g.
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Importance Sampling
• Convergence is improved by putting more points 

in regions where integrand is largest

• Corresponds to a Jacobian transformation

• Variance is reduced (weights “flattened”)
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Hit-and-Miss
• Accept points with probability = wi/wmax (provided all wi > 0)

• Accepted points are distributed like real events (cf. Buffon’s needle)

• MC efficiency eMC = E[w]/wmax  improved by importance sampling
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Multi-dimensional Integration

• Formalism extends trivially to many dimensions

• Particle physics: very many dimensions,

   e.g. phase space = 3 dimensions per particles,

   LHC event ~ 250 hadrons.

• Monte Carlo error remains

• Trapezium rule

• Simpson's rule
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Monte Carlo: Summary
Disadvantages of Monte Carlo:

•  Slow convergence in few dimensions.

Advantages of Monte Carlo:

•  Fast convergence in many dimensions.

•  Arbitrarily complex integration regions (finite discontinuities 
not a problem).

•  Few points needed to get first estimate (“feasibility limit”).

•  Every additional point improves accuracy (“growth rate”).

•  Easy error estimate.

•  Hit-and-miss allows unweighted event generation, i.e. points 
distributed in phase space just like real events.
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Phase Space Generation

34

Phase space:

Two-body easy:
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Other cases by recursive subdivision:

Or by ‘democratic’ algorithms: RAMBO, MAMBO 
Can be better, but matrix elements rarely flat.

Phase Space Generation
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Particle Decays

Simplest example

e.g. top quark decay:
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Breit-Wigner peak of W very strong - but can be removed 
by importance sampling:

pt · p⇥ pb · p�
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(prove it!)
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Associated Distributions

Big advantage of Monte 
Carlo integration:

   Simply histogram any 
associated quantities.

   Almost any other 
technique requires new 
integration for each 
observable.

   Can apply arbitrary cuts/
smearing.

37

e.g. lepton momentum in top decays:
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Hadron-Hadron Cross Sections

• Consider e.g. 

• Integrations over incoming parton momentum distributions:

• Hard process cross section        has strong peak, due to      
resonance: needs importance sampling (like W in top decay)
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• “Background” is 
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region is 252.1±3.9(stat.)±1.6(syst.)±9.8(lum.) pb. Note
that since the pp̄ inelastic cross section used by CDF in
luminosity calculations differs from DO/ ’s by +5.9% [22],
the DO/ e+e− cross sections [23] shown in Figure 1 have
been multiplied by 1.059.

FIG. 1. (a) dσ/dM distribution of e+e− and µ+µ− pairs.
All errors (except for the overall 3.9 % luminosity error) have
been combined in quadrature.The Standard Model theoreti-
cal predictions (solid line) have been normalized by a factor
of 1.11 to the data in the Z boson mass region. Also shown
are e+e− measurements from DO/. (b) AF B versus mass com-
pared to the Standard Model expectation (solid line). Also,
predicted theoretical curves for dσ/dM and AF B with an ex-
tra E6 Z′ boson (width of 10%) with MZ′=350 (dotted line)
and 500 GeV/c2 (dashed line). The inset in (a) shows the
difference between the dσ/dM CDF data for e+e− pairs and
the Standard Model prediction (on a linear scale) compared
to expectation from these two Z′ models.

Figure 1 also compares the measured dσ/dM and AFB

to theoretical predictions. The dσ/dM curve is a QCD
NNLO [20] calculation with MRST99 NLO PDFs [24].
The predictions in Figure 1(a) are normalized by a factor
F=1.11, the ratio of measured total cross section in the Z
region to the NNLO prediction (the overall normalization
uncertainties are 3.9% for the experimental data and 5%
for the NNLO theory). The Standard Model predictions
for AFB have been calculated [3,10] in NLO-QCD. The
measured dσ/dM and AFB values are in good agreement
with the Standard Model predictions. However, AFB in
the highest mass bin (300-600 GeV/c2) is 2.2σ (stan-

dard deviations) below the Standard Model prediction.
There are three events [25] in the negative hemisphere
and one event in the positive hemisphere. A negative
asymmetry in this region could result from new interac-
tions including additional gauge bosons [2–4] (discussed
as an example below), quark-lepton compositeness [5],
exchange of R parity violating supersymmetric particles,
leptoquarks, and extra-dimensions [6]. For example, the
predicted theoretical curves [3] for dσ/dM and AFB in
models which include extra E6 Z ′ bosons (with parame-
ters tuned to fit low energy electroweak data) are shown
as the dashed and dotted curves in Figure 1.

In summary, the measured dσ/dM and AFB values are
in good agreement with the Standard Model predictions.
At the highest mass values, the measured value of AFB

is 2 σ lower than the Standard Model prediction. These
high mass Drell-Yan data will be included in global fits to
electroweak data to search (or extract limits) for physics
beyond the Standard Model.
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Parton-Level Monte Carlo Calculations
Now we have everything we need to make parton-level cross 

section calculations and distributions

Can be largely automated…

• MADGRAPH

• GRACE

• COMPHEP

• AMEGIC++

• ALPGEN

But…

• Fixed parton/jet multiplicity

• No control of large higher-order corrections

• Parton level

40

Need hadron level event generators
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Summary of Lecture 1

• Monte Carlo is a very convenient numerical integration 
method.

• Well-suited to particle physics: difficult integrands, many 
dimensions.

• Integrand non-negative ! hit-and-miss event generation.

• Hard process: use parton-level generator.

• Next: parton showers and hadron-level event generation
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