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Introduction to Monte Carlo

® |ecture |:The Monte Carlo method
* theoretical foundations and limitations
* parton-level event generation

® |ecture 2: Hadron-level event generation
“* parton showering
* hadronization and underlying event

* sample of results

Introduction to Monte Carlo Techniques 2 CERN Summer Student Lectures 2016



Why Monte Carlo!?

=y

® Something to do with gambling?

® Not a place but a method ...
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Monte Carlo Event Generation

® Aim is to produce simulated (particle-level) datasets like
those from real collider events

* i.e. lists of particle identities, momenta, ...

“ simulate quantum effects by (pseudo)random numbers
® Essential for:

* Designing new experiments and data analyses

* Correcting for detector and selection effects

* Testing the SM and measuring its parameters

“ Estimating new signals and their backgrounds
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Monte Carlo Method
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Buffon’s needle

Events (needle drops)
are represented by
random points in
(6,x) phase space

0 0 U
/
X / sin
0 P(x<sin0)=2/n
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Buffon’s needle
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Buffon’s needle
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Some statistics

® Expected value of a discrete random variable x =
probability-weighted sum over possible outcomes =
expected mean of a large number of independent trials

* E[x] = xip1+ x2p2t+ x3p3+t ...

* Here x1=1 (needle on line, p1=2/1) or else x= 0
(needle off line). Hence E[x]=2/n

® Variance = Mean square deviation
* Var[x] = E[(x-E[x])*] = E[x*]-(E[x])*
+ Here Var[x] = pi-pi1? = 2/n(1-2/n)
® (RMS) Standard deviation ox=+/Var[x] = 0.481 here
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Statistics (cont’d)

® Variances for uncorrelated random variables are additive

% Var[xi+x2] =Var[xi] +Var[x:] +2(®BEBCJE@

® For N identical independent trials and Sn=x+...+xnN,

+ E[Sn] = N E[x], Var[Sn] = N Var[x], osn=+/N oy

® Here, for N needles, E[Sn]= 2N/wt, so 6/t = osn/E[SN] =
VN 6x/(2N/r), i.e. standard deviation in estimate of T is

+ op = m20x/(2+/N) = 2.37 /+/N

e 2N/Sn = £ 2.37 /+/N Central limit theorem:

S~V

lo P(< 10‘) = 68%
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Monte Carlo Integration

® PBasis of all Monte Carlo methods:

S~—V N
weight W

I—/f (b—a)f(g;i)sz

where z; are randomly (uniformly) distributed on [a,b].

® Then I:A}im Iy = Elw], o =+/Var[w]/N

where  Varlw] = E[(w ~ Elu])*] = E[w?] ~ (E[w])’
b b
= (b—a) [ [f@)do—[[ fw)ds) =V

Central limit theorem:
-VV/N | P(< 1o) = 68%
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‘ Convergence \

® Monte Carlo integrals governed by Central Limit
Theorem:error oc 1 /1/N
only if derivatives exist

c.f.trapezium rule (X ]_/]\f2 and are finite, e.g
Simpson’s rule X 1/N4 \/1'_51;2 N1/N3/2
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Importance Sampling

e Convergence is improved by putting more points
in regions where integrand is largest

® Corresponds to a Jacobian transformation

® Variance is reduced (weights “flattened”)

0.6 0.6

O 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

CcOSsS ‘5.’1‘
2

1
I = / dx(1l — z°)
JO — U

/ dp iO_S 51; [2(p)]
0.637 + 0.037 /VN

‘1
I = / dx COS %1
0

— 0.637 +0.308/VN
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Hit-and-Miss

® Accept points with probability = wi/wmax (provided all w;> 0)

® Accepted points are distributed like real events (cf. Buffon’s needle)

® MC efficiency Emc = E[w]/Wmax improved by importance sampling

T 0 0.2 0.4 0.6 0.8

evc = 1/1 =2/7 = 64% dr(l —x%)/I = 3/7m = 95%

\/5MC(1 —enmc) 048 enc(1 — gMC - 0.21
O = -
N VN VN
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Multi-dimensional Integration

® Formalism extends trivially to many dimensions
® Particle physics: very many dimensions,
e.g. phase space = 3 dimensions per particles,
LHC event ~ 250 hadrons.
® Monte Carlo error remains x 1/1/N
® Trapezium rule o 1/N2/d
® Simpson's rule X 1/N4/d
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Monte Carlo: Summary

Disadvantages of Monte Carlo:

® Slow convergence in few dimensions.
Advantages of Monte Carlo:

® Fast convergence in many dimensions.

® Arbitrarily complex integration regions (finite discontinuities
not a problem).

® Few points needed to get first estimate ("‘feasibility limit”).
® Every additional point improves accuracy (“‘growth rate”).
® FEasy error estimate.

® Hit-and-miss allows unweighted event generation, i.e. points
distributed in phase space just like real events.
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Phase Space Generation

1 .
258 .
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Phase Space Generation

e Other cases by recursive subdivision:

R

1 (M—m)? 5
an, (M) = - | dm2 dMy(M) d,,_1(m)

e Or by ‘democratic’ algorithms: RAMBO, MAMBO
Can be better, but matrix elements rarely flat.
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Particle Decays

e Simplest example W U

e.g. top quark decay: b

1( 8 )2 Dt - Do Db * P
2 (m‘/I

|M‘2 — 5l a2 2 2 a2 r2
SIN 9’11) ]\[LV’)Q _I_ I_‘/‘ A[L1;

1 1 ' dS2 dS2
r=_— [ IM2dm3y (1 iy W
. M? ) 4 4nx
Breit-Wigner peak of W very strong - but can be removed
by importance jampllng: 2 M2
ms., — arctan (prove it!)
v ( L'y My )
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Associated Distributions

Big advantage of Monte
Carlo integration:

o Simply histogram any
associated quantities.

¢ Almost any other
technique requires new
integration for each
observable.

® Can apply arbitrary cuts/
smearing.

Introduction to Monte Carlo Techniques

e.g. lepton momentum in top decays:

37
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Hadron-Hadron Cross Sections

2 A
§ = Ly, = 4pppp § = 4Apgpg = T1228

e Considereg. pp — 70 ot

® |[ntegrations over incoming parton momentum distributions:

o(s) = /01 drq f(x1) /01 drsf(x2) 6(x1228)

® Hard process cross section 4(3) has strong peak, due to 2"
resonance: needs importance sampling (like W in top decay)
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® “Background” is qq7 — v* — (T4
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Parton-Level Monte Carlo Calculations

Now we have everything we need to make parton-level cross
section calculations and distributions

Can be largely automated...
e MADGRAPH

* GRACE

o COMPHEP

o AMEGIC++

e ALPGEN

But...
® Fixed parton/jet multiplicity
® No control of large higher-order corrections

® Parton level

-—» Need hadron level event generators
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Summary of Lecture |

® Monte Carlo is a very convenient numerical integration
method.

® Well-suited to particle physics: difficult integrands, many
dimensions.

® |Integrand non-negative > hit-and-miss event generation.
® Hard process: use parton-level generator.

® Next: parton showers and hadron-level event generation
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